Find the area bounded by the graphs of \(y = x^2 - 2x + 3 \), \(y = 1 - x^2 \), \(x = -1 \), and \(x = 2 \). Provide the exact answer.

Find the area bounded by the graphs of \(y^2 = x + 5 \) and \(x - y = 1 \). Provide the exact answers. Show all the necessary calculations by hand.

Find the volume of the solid generated if the region bounded by \(y = \sin 2x \), \(y = 0 \), \(x = 0 \), and \(x = \frac{\pi}{4} \) is rotated about the \(x \)-axis. Provide the exact answer.

Find the volume of the solid generated if the region bounded by \(y = \frac{e^{-\frac{x}{2}}}{x^3} \), \(y = 0 \), \(x = 1 \), and \(x = 2 \) is rotated about the \(y \)-axis. Provide the exact answer.

Find the volume of the solid generated if the region bounded by \(y = x^3 \), \(y = 0 \), \(x = 0 \), and \(x = 2 \) is rotated about the line \(y = -1 \). Provide the exact answer.

Use the techniques of calculus to show that the volume \(V \) of a right circular cone with radius \(r \) and height \(h \) is given by \(V = \frac{1}{3} \pi r^2 h \). Show complete details of your calculation very carefully.

Find the volume of the solid whose base is bounded by \(x^2 + y^2 = 16 \), and whose cross sections perpendicular to the \(x \)-axis are equilateral triangles. Again, show all details including a clear picture of the solid. Provide the exact answer.

Find the arc length of the graph of \(y = \frac{1}{2} + \frac{x^3}{6} \) from \(x = 1 \) to \(x = 4 \). Provide the exact answer. Make sure to show the complete details.