MATH 200 (FALL 2003)
TEST 2
NAME:-------------------

SHOW ALL WORK

1. Find the derivatives of the following functions. Simplify your answers for parts (a) and (b).

 (a) \(y = \frac{3}{2\sqrt{x^2+1}} \)
 (b) \(f(\theta) = \sin^2(3\theta) \)
 (c) \(y = \sec^2 t + \sec(t^2) \)

2. Use the definition of the derivative to find \(f'(x) \) given that \(f(x) = -\frac{5}{4x^2} \). DO NOT use short-cut rules of differentiation.

3. Find the equation of the tangent line to the graph of \(f(x) = -2x^3 + 3x^2 - 4x + 5 \) at \(x = 2 \). Leave your answer in the slope-intercept form.

4. Find the critical points of the function \(y = (2x + 3)^4(2 - 3x)^2 \). Provide the exact answers.

5. Find the equation of the tangent line to the graph of \(x^2 + y^2 - 3xy + 2y = 1 \) at the point \((1,1) \). Leave your answer in the slope-intercept form.

6. Find the points on the graph of \(f(x) = 54x + \frac{3}{2x^2} \) at which the tangent line is horizontal. Find both \(x \) and \(y \)-coordinates. Provide the exact answers.

7. A spherical balloon is inflated at a rate of \(3 \text{ in}^3/\text{sec} \). Find the rate of change of the diameter of the balloon when the volume of the balloon is equal to \(9\pi/2 \text{ in}^3 \). Provide the exact answer.

8. State the Mean Value Theorem (MVT) in precise terms. Draw a BIG diagram to illustrate the idea behind the theorem.

Consider the function \(f(x) = \frac{2x^2 - 1}{x + 1} \) on the closed interval \([0, 3]\). Check whether the MVT can be applied to this function. If so, find the \(c \)-values guaranteed by the theorem.

9. Find the absolute maximum/minimum of the function \(f(x) = 2x^4 - 4x^2 + 10 \) on the interval \([-2, 3]\).

 What theorem guarantees the existence of these absolute maximum and absolute minimum? State this theorem in precise terms.

10. A balloon rises vertically at a rate of \(2 \text{ ft/sec} \) from a point on the ground 40 meters from an observer. Provide the exact answers to the following:

 (a) Find the rate of change of the angle of elevation of the balloon from the observer, when the balloon is 30 meters above the ground.
1. (a) \(y = \frac{3}{2\sqrt{x^2+1}} \) \:
 \(\frac{dy}{dx} = \frac{3}{2} \cdot \frac{1}{(x^2+1)^{\frac{3}{2}}} \cdot \frac{2x}{2(x^2+1)^{\frac{3}{2}}} = -\frac{3x}{2(x^2+1)^{\frac{3}{2}}} \)

(b) \(f(0) = \sin^2(3\theta) = [\sin(3\theta)]^2 \)
 \(f'(\theta) = 2[\sin(3\theta)] \cdot \cos(3\theta) \cdot 3 = 6\sin(3\theta)\cos(3\theta) \)

(c) \(y = \sec^2 t + \sec(t^2) = [\sec(t)]^2 + \sec(t^2) \)
 \(\frac{dy}{dt} = 2[\sec(t)] \cdot \sec(t)\tan(t) + \sec(t^2) \cdot \tan(t^2) \cdot 2t \)
 \(\therefore \frac{dy}{dt} = 2\sec^2 t \tan t + 2t \sec(t^2) \tan t^2 \)

2. Given \(f(x) = \frac{-5}{4x^2} \)
 \(f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h \to 0} \frac{-5}{4(x+h)^2} - \frac{5}{4x^2} = \lim_{h \to 0} \frac{-5x^2 + 5(x+h)^2}{h \cdot 4x^2(x+h)^2} \)
 \(= \lim_{h \to 0} \frac{-5x^2 + 5x^2 + 10xh + 5h^2}{h \cdot 4x^2(x+h)^2} \)
 \(= \lim_{h \to 0} \frac{10x}{4x^2(x+h)^2} = \frac{10x}{4x^4} = \frac{5}{2x^3} \)
 \(\therefore f'(x) = \frac{5}{2x^3} \)

3. \(f(x) = -2x^3 + 3x^2 - 4x + 5 \) at \(x = 2 \)
 \(f(2) = -2(2)^3 + 3(2)^2 - 4(2) + 5 = -16 + 12 - 8 + 5 = -7 \)

Slope of tangent at \(x = 2 \) is \(f'(2) = (-m) \)
 \(f'(x) = -6x^2 + 6x - 4 \)
 \(f'(2) = -6(2)^2 + 6(2) - 4 = -24 + 12 - 4 = -16 = m \)

Equation of tangent line: \(y - y_1 = m(x - x_1) \)
 \(y + 7 = -16(x - 2) \)
 \(y = -16x + 25 \) is the required equation of the tangent line

4. Given: \(x^2 + y^2 - 3xy + 2y = 1 \) at \((1,1)\)

Differentiate both sides implicitly with respect to \(x \).

\[2x + 2y \cdot \frac{dy}{dx} - 3(x\frac{dy}{dx} + y) + 2\frac{dy}{dx} = 0 \]

\[\frac{dy}{dx} (2y - 3x + 2) = -2x + 3y \]

\[\frac{dy}{dx} = \frac{-2x + 3y}{2y - 3x + 2} \]

\[m = \text{slope of tangent at } (1,1) = \frac{dy}{dx} \bigg|_{(1,1)} = \frac{-2(1)+3(1)}{2(1)-3(1)+2} = \frac{1}{1} = 1 \]

Equation of tangent line: \(y - y_1 = m(x - x_1) \)

\[y - 1 = 1(x - 1) \]

\[y = x \]
4) Given: \(x^2 + y^2 - 3xy + 2y = 1 \) at \((1,1)\) \(\therefore x_1 = 1\) and \(y_1 = 1\).

Differentiate both sides implicitly with respect to \(x\).

\[2x + 2y \cdot \frac{dy}{dx} - 3\left(x \frac{dy}{dx} + y\right) + 2 \frac{dy}{dx} = 0. \]

\[\therefore \frac{dy}{dx} \left(2y - 3x + 2\right) = -2x + 3y \quad \therefore \frac{dy}{dx} = \frac{-2x + 3y}{2y - 3x + 2} \]

\[m = \text{slope of tgt at } (1,1) = \frac{dy}{dx}\mid_{(1,1)} = \frac{-2(1) + 3(1)}{2(1) - 3(1) + 2} = \frac{1}{1} = 1 \]

\[\therefore \text{eqn of tgt line: } y - y_1 = m(x - x_1) \quad : y - 1 = 1(x - 1) \quad : y = x \]

5) \(f(x) = 54x + \frac{3}{2x} = 54x + \frac{3}{2}x^{-1} \)

\[\therefore f'(x) = 54 + \frac{3}{2}(-1)x^{-2} = 54 - \frac{3}{2x^2}. \]

Any horizontal tangent line has slope zero, so set \(f'(x) = 0\) and solve for \(x\).

\[54 - \frac{3}{2x^2} = 0 \quad : \frac{3}{2x^2} = 54 \quad : x^2 = \frac{3}{2(54)} = \frac{1}{36} \quad : x = \pm \sqrt{\frac{1}{36}} = \pm \frac{1}{6} \]

When \(x = \frac{1}{6}\) : \(f(\frac{1}{6}) = 54(\frac{1}{6}) + \frac{3}{2(\frac{1}{6})} = 9 + \frac{9}{2} = 18 \quad : \) one point is \((\frac{1}{6}, 18)\)

When \(x = -\frac{1}{6}\) : \(f(-\frac{1}{6}) = 54(-\frac{1}{6}) + \frac{3}{2(-\frac{1}{6})} = -18 \quad : \) the second pt is \((-\frac{1}{6}, -18)\).

\[\therefore \text{the points on the graph at which the tangent lines are horizontal are } (\frac{1}{6}, 18) \text{ and } (-\frac{1}{6}, -18). \]
Let $V = \text{Vol}$; $r = \text{rad.}$ (of the balloon); $x = \text{diameter}$

Given: \(\frac{dv}{dt} = 3 \text{ in}^3/\text{sec.} \)

Find: \(\frac{dx}{dt} \bigg| \text{v} = \frac{9\pi}{2} \)

Use Chain Rule: \(\frac{dv}{dt} = \frac{dv}{dr} \cdot \frac{dr}{dt} \)

But, Since \(V = \frac{4\pi r^3}{3} \), \(\frac{dv}{dr} = \frac{4\pi r^2}{} \)

\[\therefore \frac{dv}{dt} = 4\pi r^2 \cdot \frac{dr}{dt} \quad \therefore \frac{dr}{dt} = \left(\frac{dv}{dt} \right) \cdot \frac{1}{4\pi r^2} = \frac{3}{4\pi r^2} \]

Find \(r \) when \(v = \frac{9\pi}{2} \):
\[\frac{9\pi}{2} = \frac{4\pi r^3}{3} \quad \therefore r^3 = \frac{27}{8} \quad \therefore r = \sqrt[3]{\frac{27}{8}} = \frac{3}{2} \text{ in} \]

\[\therefore \frac{dr}{dt} \bigg| \text{v} = \frac{9\pi}{2} = \frac{3}{4\pi} \left(\frac{3}{2} \right)^2 = \frac{1}{3\pi} \text{ in/sec.} \]

But, \(x = 2r \), so \(\frac{dx}{dt} = 2 \frac{dr}{dt} = 2 \left(\frac{1}{3\pi} \right) \quad \therefore \frac{dx}{dt} = \frac{2}{3\pi} \text{ in/sec}. \]

7. **MVT Statement** (See page 170 of your text)

Given \(f(x) = \frac{2x^2 - 1}{x+1} \) on \([0,3]\). Since \(f \) is a rational function with domain \((-\infty, -1) \cup (-1, \infty)\), and since \(x = -1 \) does not belong to the given closed interval \([0,3]\), \(f \) is cts on \([0,3]\) and diff. on \((0,3)\). \(\therefore \) The Mean Value Theorem is applicable.

Let \(a = 0 \) and \(b = 3 \). Then \(\frac{f(b) - f(a)}{b-a} = \frac{f(3) - f(0)}{3-0} = \frac{\frac{17}{4} - (-1)}{3} = \frac{21}{12} = \frac{7}{4} \)

Also, \(f'(x) = \frac{(x+1) \cdot 4x - (2x^2 - 1)(1)}{(x+1)^2} = \frac{4x^2 + 4x - 2x^2 + 1}{(x+1)^2} = \frac{2x^2 + 4x + 1}{(x+1)^2} \)

Set \(f'(x) = \frac{f(b) - f(a)}{b-a} \), and solve for \(x \). \(\therefore \frac{2x^2 + 4x + 1}{(x+1)^2} = \frac{7}{4} \)

\[\therefore 8x^2 + 16x + 4 = 7x^2 + 14x + 7 \quad \therefore x^2 + 2x - 3 = 0 \quad \therefore (x+3)(x-1) = 0 \]

\[\therefore x = -3 \text{ or } x = 1 \quad \text{But } x = -3 \text{ does not belong to the open int. } (0,3) \]

\[\therefore x = 1 \quad \therefore c = 1. \]
7. MVT Statement (See page 170 of your text)

Given \(f(x) = \frac{2x^2-1}{x+1} \) on \([0,3]\). Since \(f \) is a rational function with domain \((-\infty,-1) \cup (-1,\infty)\), and since \(x = -1 \) does not belong to the given closed interval \([0,3]\), \(f \) is cts on \([0,3]\) and diff. on \((0,3)\). \(\therefore \) The Mean Value Theorem is applicable.

Let \(a = 0 \) and \(b = 3 \). Then \(\frac{f(b) - f(a)}{b-a} = \frac{f(3) - f(0)}{3-0} = \frac{\frac{17}{4} - (-1)}{3} = \frac{21}{12} = \frac{7}{4} \).

Also, \(f'(x) = \frac{(x+1) \cdot 4x - (2x^2-1)(1)}{(x+1)^2} = \frac{4x^2 + 4x - 2x^2 + 1}{(x+1)^2} = \frac{2x^2 + 4x + 1}{(x+1)^2} \).

Set \(f'(x) = \frac{f(b) - f(a)}{b-a} \), and solve for \(x \).

\[\frac{2x^2 + 4x + 1}{(x+1)^2} = \frac{7}{4} \]

\[\therefore 8x^2 + 16x + 4 = 7x^2 + 14x + 7 \]

\[8x^2 + 2x - 3 = 0 \]

\[\therefore \ x = -3 \text{ or } x = 1 \]

But \(x = -3 \) does not belong to the open int. \((0,3)\). \(\therefore \) \(x = 1 \).

Thus, \(c = 1 \).

8. \(f(x) = (1-2x)^x (4x-3) \) on \([0,1]\)

Crit. pts: \(f'(x) = (1-2x)^x (4x-3) - (1-2x)^x \cdot 2 \cdot (4x-3) = 4(1-2x)^x - 4(1-2x)(4x-3) \).

\[f'(x) = 0 \implies x = \frac{1}{2} \text{ or } x = \frac{2}{3} \] (both pts are in the domain)

The only critical points are \(x = \frac{1}{2} \) and \(x = \frac{2}{3} \).

Now: \(f(0) = (1)^2 (-3) = -3 \) smallest

\(f\left(\frac{1}{2}\right) = 0 \)

\(f\left(\frac{2}{3}\right) = (1-\frac{4}{3})^\frac{2}{3} (-3) = \frac{1}{3} \cdot \frac{x}{3} = \frac{1}{27} \)

\(f(1) = (-1)^2 (1) = 1 \) largest

\(\therefore \) The abs. min. value of the function is \(-3\) (occurs at \(x = 0 \)) and the abs. max. value of the function is \(1\) (occurs at \(x = 1 \)).

The Extreme Value Thm guarantees the existence of the abs. max and abs. min for the above problem.

Extreme Value Theorem statement (See page 160 of your text).
Given \(\frac{dh}{dt} = 2 \text{ ft/sec} \)

(a) \(\frac{d\theta}{dt} \bigg|_{h=30} \)

First, \(\tan\theta = \frac{h}{40} \); \(h = 40 \tan\theta \).

\[\therefore \frac{dh}{dt} = 40 \cdot \sec^2\theta \cdot \frac{d\theta}{dt} \]

\[2 = 40 \cdot \sec^2\theta \cdot \frac{d\theta}{dt} \]

\[\therefore \frac{d\theta}{dt} = \frac{2}{40 \sec^2\theta} = \frac{\cos^2\theta}{20} \]

Now, find \(\theta \) when \(h=30 \):

\[x^2 = h^2 + 40^2 \]

\[\therefore x = \pm \sqrt{30^2 + 40^2} = 50 \text{ ft} \]

\[\therefore \cos\theta = \frac{40}{x} = \frac{40}{50} = \frac{4}{5} \]

\[\therefore \frac{d\theta}{dt} \bigg|_{h=30} = \frac{\cos^2\theta}{20} \bigg|_{\cos\theta = \frac{4}{5}} = \left(\frac{\frac{4}{5}}{20}\right) = \frac{4}{125} \text{ rad/Sec.} \]

(b) \(\frac{dx}{dt} \bigg|_{h=30} \)

First, \(\cos\theta = \frac{40}{x} \)

\[\therefore \frac{dx}{dt} = 40 \sec\theta \cdot \tan\theta \cdot \frac{d\theta}{dt} \]

\[\therefore \frac{dx}{dt} \bigg|_{h=30} = 40 \cdot \frac{1}{\cos \theta} \cdot \frac{(4)}{(4)} \cdot \frac{4}{125} = \frac{10}{125} \cdot \frac{4}{25} = \frac{30}{25} = \frac{6}{5} \text{ ft/sec.} \]