Mean Value Theorem (MVT)

Suppose f is a function defined on some closed interval $[a, b]$ such that

(i) f is continuous on $[a, b]$

(ii) f is differentiable on (a, b)

Then there is a real number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

IDEA:

The diagram illustrates the Mean Value Theorem. The slope of the line segment AB between A and B is equal to the average rate of change of $f(x)$ from a to b, which is $f'(c)$. The slope of the tangent line at any point $x = c_1$, $x = c_2$, etc., is $f'(c_1)$, $f'(c_2)$, etc., for various points $c_1, c_2, ...$.