SUMMARY OF DIFFERENTIATION RULES

1. **Constant Rule**: \(\frac{d}{dx} (c) = 0 \)
 (c is a constant)

2. **Power Rule**: \(\frac{d}{dx} (x^n) = nx^{n-1} \)
 (n is a constant)

3. **Constant Multiple Rule**: \(\frac{d}{dx} [c \cdot f(x)] = c \cdot f'(x) \)
 (c is a constant)

4. **Sum and Difference Rules**: \(\frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x) \)

5. **Product Rule**: \(\frac{d}{dx} [f(x) \cdot g(x)] = f(x) \cdot g'(x) + f'(x) \cdot g(x) \)

6. **Quotient Rule**: \(\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{[g(x)]^2} \)

7. **Derivatives of Trig Functions**:
 \(\frac{d}{dx} (\sin x) = \cos x \)
 \(\frac{d}{dx} (\cos x) = -\sin x \)
 \(\frac{d}{dx} (\tan x) = \sec^2 x \)
 \(\frac{d}{dx} (\cot x) = -\csc^2 x \)
 \(\frac{d}{dx} (\sec x) = \sec x \cdot \tan x \)
 \(\frac{d}{dx} (\csc x) = -\csc x \cdot \cot x \)