The Birth of Calculus

Tangent line to

\[y = f(x) \text{ at point } P \]

\[f(x) \]

\[f(x+h) \]

\[x \]

\[x+h \]

\[y = f(x) \]

\[f(x+h) - f(x) \]

\[h \]

Diff. Quo. \(= \frac{f(x+h)-f(x)}{h} \)

The slope of the secant line \(PQ \)

The average rate of change of \(f(x) \) from \(x \) to \(x+h \)

Now, make \(h \) smaller and smaller. So, as \(h \to 0 \) one gets:

\[f'(x) = \lim_{{h \to 0}} \frac{f(x+h)-f(x)}{h} \]

The slope of the tangent line at \(P \)

The instantaneous rate of change of \(f(x) \) at \(P \)

Algebraic Meaning of the Derivative

Geometric Meaning

Physical Meaning