Given one trig function, finding the others

1. Given \(\sin \theta = \frac{-2}{\sqrt{5}} \) with \(\theta \) in quadrant \(III \), find the exact value of \(\cos \theta \).

There are two methods to do this. Learn both!

Method I (Using \(x-y-r \) calculations)

\[
\sin \theta = \frac{-2}{\sqrt{5}} = \frac{y}{r}
\]

::: we can pick \(y = -2 \), \(r = \sqrt{5} \)

(Important: This choice is legal as it agrees with the diagram. In quadrant \(III \) \(y \) is \(\Theta \), and \(r \) is always \(+ \).)

Now \(y = -2 \); \(r = \sqrt{5} \); \(x = ? \)

Use \(r^2 = x^2 + y^2 \)

\[
(\sqrt{5})^2 = x^2 + (-2)^2
\]

\[
5 = x^2 + 4
\]

::: \(x^2 = 1 \)

::: \(x = \pm 1 \)

::: \(x = \pm \sqrt{1} \)

But \(\theta \) is in quadrant \(III \), so \(x \) must be \(\Theta \)

::: \(x = -1 \)

Finally, \(\cos \theta = \frac{x}{r} = \frac{-1}{\sqrt{5}} \)

::: \(\cos \theta = -\frac{1}{\sqrt{5}} \)
Method II (Use trigonometric identities)

Given: \(\sin \theta = -\frac{2}{\sqrt{5}} \) with \(\theta \) in \(\text{III} \)

Find: \(\cos \theta \)

Use \(\sin^2 \theta + \cos^2 \theta = 1 \)

\(\left(-\frac{2}{\sqrt{5}} \right)^2 + \cos^2 \theta = 1 \)

\(\frac{4}{5} + \cos^2 \theta = 1 \)

\(\cos^2 \theta = 1 - \frac{4}{5} \)

\(\cos^2 \theta = \frac{1}{5} \)

\(\cos \theta = \pm \sqrt{\frac{1}{5}} \)

But \(\theta \) is in quadrant \(\text{III} \), so \(\cos \theta \) must be negative.

\(\therefore \cos \theta = -\sqrt{\frac{1}{5}} \)

\(\therefore \cos \theta = -\frac{1}{\sqrt{5}} \)
Given \(\csc \beta = -\frac{\sqrt{7}}{2} \) with \(\beta \) in quadrant IV, find the exact value of \(\tan \beta \)

Method I (Using \(x-y-r \) Calculations)

\[
\csc \beta = -\frac{\sqrt{7}}{2} = \frac{r}{y}
\]

However, you cannot pick \(r = -\sqrt{7}, y = 2 \) as it does not agree with the diagram. This is because we know that \(r \) is always \(+ \), and in quadrant IV, \(y \) is \(- \).

\[\therefore \text{Write } \csc \beta = -\frac{\sqrt{7}}{2} = \frac{r}{y} \& \text{ then pick } r \text{ and } y \]

So, we can pick \(y = -2 ; \quad r = \sqrt{7} ; \quad x = ? \)

Use \(x^2 + y^2 = r^2 \)
\[
x^2 + (-2)^2 = (\sqrt{7})^2
\]
\[\therefore x^2 + 4 = 7
\]
\[\therefore x^2 = 3
\]
\[\therefore x = \pm \sqrt{3}
\]

But \(x \) is in IV, so that \(x \) must be \(+ \)

\[\therefore x = +\sqrt{3}
\]

Finally, \(\tan \beta = \frac{y}{x} = -\frac{2}{\sqrt{3}} \)

\[\therefore \tan \beta = -\frac{2}{\sqrt{3}} \]
Method II (Using Trigonometric Identities)

Given: \(\csc \beta = -\frac{\sqrt{7}}{2} \) with \(\beta \) in IV

Find: \(\tan \beta \)

There are several ways of doing this. One plan is to use \(\csc^2 \beta = 1 + \cot^2 \beta \) to find \(\cot \beta \) first. After finding \(\cot \beta \), use \(\tan \beta = \frac{1}{\cot \beta} \) to find \(\tan \beta \).

\[
\therefore \text{Start with: } \csc^2 \beta = 1 + \cot^2 \beta \\
\left(-\frac{\sqrt{7}}{2}\right)^2 = 1 + \cot^2 \beta \\
\frac{7}{4} = 1 + \cot^2 \beta \\
\therefore \cot^2 \beta = \frac{7}{4} - 1 \\
\cot^2 \beta = \frac{3}{4} \\
\therefore \cot \beta = \pm \sqrt{\frac{3}{4}} \\
\]

But \(\beta \) is in quadrant IV, so \(\cot \beta \) must be \(\theta \)

\[
\therefore \cot \beta = -\sqrt{\frac{3}{4}} = -\frac{\sqrt{3}}{2} \\
\]

Now use: \(\tan \beta = \frac{1}{\cot \beta} \)

\[
\therefore \tan \beta = \frac{1}{-\sqrt{\frac{3}{4}}} = -\frac{2}{\sqrt{3}} \\
\therefore \tan \beta = -\frac{2}{\sqrt{3}} \\
\]
Given $\sec \alpha = \frac{-4}{3}$ with α in quadrant II, find the exact value of $\cosec \alpha$.

Method I (Using $x-y-r$ calculations)

$\sec \alpha = \frac{-4}{3} = \frac{r}{x}$

But you **cannot** pick $r = -4$ and $x = 3$, as it does not agree with the diagram. This is because we know that r is always positive and in II, x is negative.

∴ Write $\sec \alpha = \frac{-4}{3} = \frac{r}{x}$ and then pick r & x.

So we can pick: $x = -3$; $r = 4$; $y =$?

Use $x^2 + y^2 = r^2$

$$(-3)^2 + y^2 = (4)^2$$

$9 + y^2 = 16$

∴ $y^2 = 7$

∴ $y = \pm \sqrt{7}$

But α is in quadrant II, so y must be positive.

∴ $y = +\sqrt{7}$

Finally, $\cosec \alpha = \frac{r}{y} = \frac{4}{\sqrt{7}}$

∴ $\cosec \alpha = \frac{4}{\sqrt{7}}$
Method III (Using trigonometric Identities)

Given: \(\sec \alpha = -\frac{4}{3} \) with \(\alpha \) in II

Find: \(\csc \alpha \)

There are several ways of doing this:

One plan is to use \(\sec^2 \alpha = 1 + \tan^2 \alpha \) to find \(\tan \alpha \). Then using values for \(\sec \alpha \) and \(\tan \alpha \), and by using the identity \(\frac{\sin \alpha}{\cos \alpha} = \tan \alpha \), you can find \(\csc \alpha \).

So: First use \(\sec^2 \alpha = 1 + \tan^2 \alpha \)

\(\left(-\frac{4}{3}\right)^2 = 1 + \tan^2 \alpha \)

\(\therefore \frac{16}{9} = 1 + \tan^2 \alpha \)

\(\therefore \tan^2 \alpha = \frac{16}{9} - 1 \)

\(\tan^2 \alpha = \frac{7}{9} \)

\(\therefore \tan \alpha = \pm \sqrt{\frac{7}{9}} \)

But \(\alpha \) is in quadrant II, so \(\tan \alpha \) must be \(\Theta \)

\(\therefore \tan \alpha = -\sqrt{\frac{7}{9}} = -\frac{\sqrt{7}}{3} \)

Now use \(\cos \alpha = \frac{1}{\sec \alpha} \) to find \(\cos \alpha \)

\(\therefore \cos \alpha = \frac{1}{-\frac{4}{3}} = -\frac{3}{4} \)
By (3) we know \(\tan \alpha \) and \(\cos \alpha \).

\[\therefore \text{Use } \frac{\sin \alpha}{\cos \alpha} = \tan \alpha \text{ to find } \sin \alpha \]

\[\therefore \sin \alpha = \cos \alpha \cdot \tan \alpha \] * USEFUL!

\[\therefore \sin \alpha = \frac{-\sqrt{3}}{4} \times \frac{-\sqrt{7}}{4} = \frac{\sqrt{21}}{4} \]

\[\therefore \sin \alpha = \frac{\sqrt{21}}{4} \]

Finally, use \(\csc \alpha = \frac{1}{\sin \alpha} \) to find \(\csc \alpha \)

\[\therefore \csc \alpha = \frac{1}{\frac{\sqrt{21}}{4}} = \frac{4}{\sqrt{21}} \]

\[\therefore \csc \alpha = \frac{4}{\sqrt{21}} \]