1. (a) Convert $28^\circ 43' 37''$ into degrees and decimal degrees (two decimal places)
(b) Convert 475.813° into degrees, minutes, and seconds.

2. Given that the point $P(4, -3)$ is on the terminal side of some angle θ in the standard position, find the exact values of the last three trigonometric functions of θ. Simplify your answers.

3. Given $\cot \beta = \frac{2}{5}$ with β in quadrant III, find the exact values of the first three trigonometric functions of β. Use any method to solve this problem. Show complete work.

4. Given $\sec \theta = -\frac{5}{\sqrt{2}}$ with θ in quadrant II find the exact value of $\csc \theta$. Use only the trigonometric identities to solve this problem (No x-y-r calculations).

5. Given $\csc \alpha = -\frac{7}{3}$ with α in quadrant IV find the exact values of $\cos \alpha$ and $\tan \alpha$. Use only the trigonometric identities to solve this problem (No x-y-r calculations). Simplify the answers.

6. Draw an angle of 810° in the standard position. Then use a suitable $x-y-r$ calculation to find all trig functions of 810°. Must show the x, y, r values, and the steps of your calculation, not just the final answer.

7. Evaluate $2\sin^3(-270^\circ) - 3\cot^5(-810^\circ) - 5\sec^3(900^\circ)$. Show each line of your calculation carefully and methodically.

8. The equation of the terminal side of some angle θ in the standard position is given by $\frac{x}{3} + \frac{y}{2} = 0$, $x \leq 0$. Find the exact value of $\sec \theta$. Make sure to draw a correct diagram. Simplify your answer.

9. ABC is a right triangle with the right angle at A. Let D be the foot of the altitude from A to the side BC. Given that $AB = 4\sqrt{3}$ cm and $AC = \sqrt{2}$ cm, find AD. Provide the exact answer.
1. (a) \[28^\circ 43' 37'' = 28^\circ + \frac{43}{60} + \frac{37}{3600} \approx 28.73^\circ \]
(b) \[475.813^\circ = 475^\circ + (0.813 \times 60)' = 475^\circ + 48' + (0.78 \times 60)'' \approx 475^\circ 48' 47'' \]

2. \[x = 4; \quad y = -3; \quad r = ? \]
\[\text{Cot } \theta = \frac{x}{y} = \frac{-4}{3} \]
\[r = \sqrt{x^2 + y^2} \]
\[r = \sqrt{4 + (-3)^2} \]
\[r = \sqrt{25} \]
\[r = 5 \]
\[\text{Sec } \theta = \frac{r}{x} = \frac{5}{4} \]
\[\text{Cosec } \theta = \frac{r}{y} = \frac{5}{3} \]

3. Given: \(\text{Cot } \beta = \frac{2}{5} \) \(\& \beta \) in III

Find: \(\sin \beta, \cos \beta \), and \(\tan \beta \)

\[\text{Cot } \beta = \frac{x}{y} = \frac{-2}{5} \]

\[r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29} \]
\[\sin \beta = \frac{y}{r} = \frac{-5}{\sqrt{29}} \]
\[\cos \beta = \frac{x}{r} = \frac{-2}{\sqrt{29}} \]
\[\tan \beta = \frac{y}{x} = \frac{5}{2} \]

4. Given: \(\sec \theta = \frac{-5}{\sqrt{2}} \) with \(\theta \) in II

Find: \(\csc \theta \)

Answer: (STEP 1) \(\cos \theta = \frac{1}{\sec \theta} = \frac{1}{\frac{-5}{\sqrt{2}}} = -\frac{\sqrt{2}}{5} \)

(STEP 2) Use: \(\sin^2 \theta + \cos^2 \theta = 1 \)
\(\sin^2 \theta + \left(-\frac{\sqrt{2}}{5}\right)^2 = 1 \)
\(\sin^2 \theta + \frac{2}{25} = 1 \)
\(\sin^2 \theta = 1 - \frac{2}{25} = \frac{23}{25} \)
\(\sin \theta = \pm \frac{\sqrt{23}}{25} \)
\(\therefore \sin \theta = \frac{\sqrt{23}}{25} \)

(STEP 3) Use: \(\csc \theta = \frac{1}{\sin \theta} \)
\(\therefore \csc \theta = \frac{5}{\sqrt{23}} \)
5. Given: \(\csc \alpha = \frac{-2}{3} \) and \(\alpha \) in IV
Find: \(\sec \alpha \) and \(\tan \alpha \)

Answer: (STEP 1)
Use: \(\csc^2 \alpha = 1 + \cot^2 \alpha \)
\[
\left(\frac{-2}{3} \right)^2 = 1 + \cot^2 \alpha \\
\frac{4}{9} = 1 + \cot^2 \alpha \\
\frac{4}{9} = \cot^2 \alpha \\
\therefore \cot \alpha = \pm \frac{2}{3} \\
\therefore \cot \alpha = \frac{2}{3} \\
\therefore \cot \alpha = -2 \frac{\sqrt{10}}{3}
\]

(SITE 2)
Use: \(\tan \alpha = \frac{1}{\cot \alpha} = \frac{-3}{2} \)

(SITE 3)
Use: \(\sin \alpha = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha \)
\[
\therefore \cos \alpha = \frac{\sin \alpha}{\tan \alpha} = \frac{\left(\frac{-3}{7} \right)}{\left(\frac{-3}{2} \right)} = \frac{2\sqrt{10}}{7}
\]

6. \(\sin \left(810^\circ \right) = \frac{y}{r} = \frac{2}{2} = 1 \)
\(\cos \left(810^\circ \right) = \frac{x}{r} = \frac{0}{2} = 0 \)
\(\tan \left(810^\circ \right) = \frac{y}{x} = \frac{2}{0} = \text{undefined} \)
\(\cot \left(810^\circ \right) = \frac{x}{y} = \frac{2}{2} = 0 \)
\(\sec \left(810^\circ \right) = \frac{r}{x} = \frac{2}{2} = 1 \)
\(\csc \left(810^\circ \right) = \frac{r}{y} = \frac{2}{2} = 1 \)

7. \(2 \sin^3 (-270^\circ) - 3 \cot^5 (-810^\circ) - 5 \sec^3 (900^\circ) \)
\[
= 2 \left[\sin (-270^\circ) \right]^3 - 3 \left[\cot (-810^\circ) \right]^5 - 5 \left[\sec 900^\circ \right]^3 \\
= 2 (1)^3 - 3(-1)^5 - 5(-1)^3 \\
= 2 - 0 + 5 \\
= 7
\]
\[
\therefore 2 \sin^3 (-270^\circ) - 3 \cot^5 (-810^\circ) - 5 \sec^3 (900^\circ) = 7
\]
8. \[\frac{x}{3} + \frac{y}{2} = 0 \] with \(x \leq 0 \).

Solve for \(y \):
\[\frac{y}{2} = -\frac{x}{3} \]
\[y = -\frac{2x}{3} \]
where \(x \leq 0 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-3</td>
<td>2</td>
</tr>
</tbody>
</table>

\(x = -3 \); \(y = 2 \); \(r = ? \).

\[r = \sqrt{x^2 + y^2} \]
\[r = \sqrt{(-3)^2 + (2)^2} \]
\[r = \sqrt{13} \]

\[\sec \theta = \frac{r}{x} \]
\[\sec \theta = -\frac{\sqrt{13}}{3} \]

9. **Finding AD:** There are about 2, or 3 different ways of doing this problem. One method is to use the Pythagorean Theorem. Another method is to use the Law of Similar Triangles.

Similar Triangles Method

Note that \(\triangle ABD \) is similar to \(\triangle ABC \). The reason is that they share the same set of angles.

\[\frac{4\sqrt{3}}{x} \]
\[\frac{\sqrt{2}}{x} \]
\[\therefore \frac{AB}{x} = \frac{BC}{\sqrt{2}} \]
\[\therefore \frac{4\sqrt{3}}{x} = \frac{BC}{\sqrt{2}} \]
\[\therefore x(BC) = 4\sqrt{3} \cdot \sqrt{2} \]
\[x = \frac{4\sqrt{6}}{BC} \]

So, all you have to find is \(BC \):

Use Pyth. Thm on \(\triangle ABC \).
\[BC^2 = (4\sqrt{3})^2 + (\sqrt{2})^2 = 48 + 2 = 50 \]
\[BC = \sqrt{50} = 5\sqrt{2} \]
\[x = \frac{4\sqrt{6}}{BC} = \frac{4\sqrt{6}}{5\sqrt{2}} = \frac{4\sqrt{3}}{5} \]
\[\therefore AD = \frac{4\sqrt{3}}{5} \text{ cm.} \]