1. \(\triangle ABC \) is a right triangle with the right angle at \(B \). Given that \(b = 4\sqrt{5} \text{ cm}, \ c = 2 \text{ cm}, \) find the exact value of \(a \) (simplify).

2. (a) Convert \(326^\circ 34' 43'' \) into degrees and decimal degrees (two decimal places) \hspace{5cm} (b) Convert \(127.241^\circ \) into degrees, minutes, and seconds.

3. Given that the point \(P(5, -12) \) is on the terminal side of some angle \(\theta \) in the standard position, find the exact values of the last three trigonometric functions of \(\theta \).

4. Given \(\cot \beta = \frac{5}{3} \) with \(\sec \beta < 0 \), find the exact values of the first three trigonometric functions of \(\beta \). Use any method to solve this problem. Show complete work.

5. Given \(\csc \theta = \frac{-\sqrt{7}}{2} \) with \(\theta \) in quadrant III find the exact value of \(\sec \theta \). Use only the trigonometric identities to solve this problem.
6. Find any exact solution for $\theta : \sin(2\theta + 5^\circ) \sec(23^\circ - 6\theta) - 1 = 0$. Show each line of your work correctly.

7. Draw an angle of 630° in the standard position. Then use a suitable $x - y - r$ calculation to find all trig functions of 630°. Must show the x, y, r values, and the steps of your calculation, not just the final answer.

8. Evaluate $2\sin^3(-90^\circ) - 4\cos^2180^\circ - 5\cot^2990^\circ$. Show each line of your calculation carefully and methodically.

9. The equation of the terminal side of some angle θ in the standard position is given by $2x + 3y = 0$, $x \leq 0$. Find the exact values of the first three trigonometric functions of θ. Simplify your answers.
1. ABC is a right triangle with the right angle at B. Given that $b = 4\sqrt{5}$ cm, $c = 2$ cm, find the exact value of a (simplify).

$$b^2 = a^2 + c^2$$

$$b^2 = (4\sqrt{5})^2$$

$$b^2 = a^2 + 2^2$$

$$b^2 = a^2 + 4$$

$$\sqrt{b^2} = \sqrt{a^2 + 4}$$

$$a = \pm \sqrt{76}$$

$$a = \pm \sqrt{4 \times 19} = 2\sqrt{19}$$

2. (a) Convert $326^\circ 34' 43''$ into degrees and decimal degrees (two decimal places)

$$326 + \frac{34}{60} + \frac{43}{3600}$$

$$\approx 326.58^\circ$$

(b) Convert 127.241° into degrees, minutes, and seconds.

$$127^\circ + (0.241 \times 60)'$$

$$= 127^\circ + 14' + (0.46 \times 60)''$$

$$\approx 127^\circ 14' 28''$$

3. Given that the point $P(5, -12)$ is on the terminal side of some angle θ in the standard position, find the exact values of the last three trigonometric functions of θ.

$$x = 5; \quad y = -12; \quad r = ?$$

$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{(5)^2 + (-12)^2}$$

$$r = \sqrt{25 + 144} = 13$$

4. Given $\cot \beta = \frac{5}{3}$ with $\sec \beta < 0$, find the exact values of the first three trigonometric functions of β. Use any method to solve this problem. Show complete work.

$$\cot \beta = \frac{5}{3}$$

$$\Rightarrow \sec \beta = \frac{1}{\cos \beta} = -\frac{3}{5}$$

$$\Rightarrow \sin \beta = \frac{y}{r} = -\frac{3}{\sqrt{34}}$$

5. Given $\csc \theta = \frac{-\sqrt{7}}{2}$ with θ in quadrant III find the exact value of $\sec \theta$. Use only the trigonometric identities to solve this problem.

$$\sin \theta = \frac{1}{\csc \theta} = -\frac{2}{\sqrt{7}}$$

$$\cos \theta = \pm \frac{\sqrt{7}}{7}$$

$$\cos \theta = -\frac{\sqrt{7}}{7}$$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{-\sqrt{7}}{2}$$

$$\sec \theta = \frac{1}{\cos \theta} = -\sqrt{7}$$

$$\implies \csc \theta = \frac{3}{7}$$

$$\cos \theta = \pm \frac{3}{7}$$

$$\sec \theta = \frac{-\sqrt{7}}{2}$$
6. Find any exact solution for \(\theta : \sin(20^\circ + 5^\circ) \csc(23^\circ - 6\theta) - 1 = 0 \). Show each line of your work correctly.

\[
\begin{align*}
\sin(20^\circ + 5^\circ) \csc(23^\circ - 6\theta) & = 1 \\
\sin(20^\circ + 5^\circ) & = \frac{1}{\csc(23^\circ - 6\theta)} \\
\sin(20^\circ + 5^\circ) & = \sin(23^\circ - 6\theta) \\
\text{Set: } 2\theta + 5^\circ & = 23^\circ - 6\theta \\
8\theta & = 18^\circ \\
\therefore \theta & = \frac{18^\circ}{8} = \frac{9^\circ}{4}
\end{align*}
\]

7. Draw an angle of 630° in the standard position. Then use a suitable \(x - y - r \) calculation to find all trig functions of 630°. Must show the \(x, y, r \) values, and the steps of your calculation, not just the final answer.

\[
\begin{align*}
\cos 630^\circ & = \frac{x}{r} = \frac{0}{1} = 0 \\
\csc 630^\circ & = \frac{r}{y} = \frac{1}{-1} = -1 \\
\sec 630^\circ & = \frac{r}{x} = \frac{1}{0} \text{ undefined} \\
\tan 630^\circ & = \frac{y}{x} = \frac{-1}{0} \text{ undefined} \\
\cot 630^\circ & = \frac{x}{y} = \frac{0}{-1} = 0
\end{align*}
\]

8. Evaluate \(2\sin^3(-90^\circ) - 4\cos^2180^\circ - 5\cot^2990^\circ \). Show each line of your calculation carefully and methodically.

\[
\begin{align*}
& = 2[\sin(-90^\circ)]^3 - 4[\cos 180^\circ]^2 - 5[\cot 990^\circ]^2 \\
& = 2(-1)^3 - 4(-1)^2 - 5(0)^2 \\
& = 2(-1) - 4(1) - 5(0) \\
& = -2 - 4 - 0 \\
& = -6
\end{align*}
\]

9. The equation of the terminal side of some angle \(\theta \) in the standard position is given by \(2x + 3y = 0 \), \(x \leq 0 \). Find the exact values of the first three trigonometric functions of \(\theta \). Simplify your answers.

\[
\begin{align*}
2x + 3y & = 0 \\
3y & = -2x \\
y & = -\frac{2}{3}x \\
\text{We know } x & \leq 0 \\
\therefore \text{ Let } x & = -3 \\
y & = 2 \\
r & = \sqrt{x^2 + y^2} = \sqrt{(-3)^2 + (2)^2} = \sqrt{13} \\
\therefore r & = \sqrt{13}
\end{align*}
\]

\[
\begin{align*}
\sin \theta & = \frac{y}{r} = \frac{2}{\sqrt{13}} \\
\cos \theta & = \frac{x}{r} = \frac{-3}{\sqrt{13}} \\
\tan \theta & = \frac{y}{x} = \frac{2}{-3} = -\frac{2}{3}
\end{align*}
\]