The Systems Development Life Cycle (SDLC)

The SDLC is composed of four fundamental phases:
- Planning
- Analysis
- Design
- Implementation

Each of the phases include a set of steps, which rely on techniques that produce specific document files that provide understanding about the project.

To Understand the SDLC:
- Each phase consists of steps that lead to specific deliverables
- The system evolves through gradual refinement
Phase I: Planning

This phase is the fundamental process of understanding why an information system should be built. The Planning phase will also determine how the project team will go about building the information system. The Planning phase is composed of two planning steps.

Two Planning Steps

1. During project initiation, the system’s business value to the organization is identified (How will it lower costs or increase revenues?)
2. During project management, the project manager creates a work plan, staffs the project, and puts techniques in place to help the project team control and direct the project through the entire SDLC.

Phase II: Analysis

The analysis phase answers the questions of who will use the system, what the system will do, and where and when it will be used. During this phase the project team investigates any current system(s), identifies improvement opportunities, and develops a concept for the new system. This phase has three analysis steps.
Three Analysis Steps

Analysis strategy: This is developed to guide the projects team’s efforts. This includes an analysis of the current system.

Requirements gathering: The analysis of this information leads to the development of a concept for a new system. This concept is used to build a set of analysis models.

System proposal: The proposal is presented to the project sponsor and other key individuals who decide whether the project should continue to move forward.

The system proposal is the initial deliverable that describes what business requirements the new system should meet.

The deliverable from this phase is both an analysis and a high-level initial design for the new system.

Phase III: Design

In this phase it is decided how the system will operate, in terms of the hardware, software, and network infrastructure; the user interface, forms, and reports that will be used; and the specific programs, databases, and files that will be needed.

Five Design Steps

Design Strategy: This clarifies whether the system will be developed by the company or outside the company.

Architecture Design: This describes the hardware, software, and network infrastructure that will be used.

Database and File Specifications: These documents define what and where the data will be stored.

Program Design: Defines what programs need to be written and what they will do.

Phase IV: Implementation
During this phase, the system is either developed or purchased (in the case of packaged software).
This phase is usually the longest and most expensive part of the process.
The phase has three steps.

Three Implementation Steps

- **System Construction**: The system is built and tested to make sure it performs as designed.
- **Installation**: Prepare to support the installed system.
- **Support Plan**: Includes a post-implementation review.

Systems Development Methodologies

- **Process-centered Methodologies**: With this methodology, the focus is on defining the activities associated with the system.
 The concentration is on representing the system concept as a set of processes with information flowing into and out of the processes.

A methodology is a formalized approach to implementing the SDLC.
The methodology will vary depending on whether the emphasis is on businesses processes or on the data that supports the business.
Data-centered Methodologies

- This methodology focuses on defining the content of the data storage containers and how they are organized.
- Data-centered methodologies utilize data models as the core of the system concept.

Object-oriented Methodologies

- This methodology attempts to balance the focus between processes and data.
- The Unified Modeling Language (UML) is used to describe the system concept as a collection of objects incorporating both data and processes.

Category I of the System Development Methodology: Structured Design

- Structured design methodologies adopt a formal step-by-step approach to the SDLC that moves logically from one phase to the next.
- This design methodology introduces the use of formal modeling or diagramming techniques to describe a system’s basic business processes and follows a basic approach of two structured design categories.
Waterfall Development

With waterfall development-based methodologies, the analysts and users proceed sequentially from one phase to the next.

The two key advantages of waterfall development-based methodologies are:

- The system requirements are identified long before programming begins.
- Changes to the requirements are minimized as the project proceeds.

The two key disadvantages of waterfall development-based methodologies are:

- The design must be completely specified before programming begins.
- A long time elapses between the completion of the system proposal in the analysis phase and the delivery of the system.

Parallel Development

This methodology attempts to address the long time interval between the analysis phase and the delivery of the system.
A general design for the entire system is performed and then the project is divided into a series of distinct subprojects.

Category II of the System Development Methodology: Rapid Application Development (RAD)

RAD-based methodologies adjust the SDLC phases to get some part of the system developed quickly and into the hands of the users.

Most RAD-based methodologies recommend that analysts use special techniques and computer tools to speed up the analysis, design, and implementation phases, such as CASE (computer-aided software engineering) tools.

One possible subtle problem with RAD-based methodologies is managing user expectations.

Phased Development

This methodology breaks the overall system into a series of versions that are developed sequentially.

The team categorizes the requirements into a series of versions, then the most important and fundamental requirements are bundled into the first version of the system.

The analysis phase then leads into design and implementation; however, only with the set of requirements identified for version 1.

As each version is completed, the team begins work on a new version.
Phased Development-based Methodology

Prototyping

Prototyping-based methodologies perform the analysis, design and implementation phases concurrently.
- All three phases are performed repeatedly in a cycle until the system is completed.
- A prototype is a smaller version of the system with a minimal amount of features.

Advantage: Provides a system for the users to interact with, even if it is not initially ready for use.
Disadvantage: Often the prototype undergoes such significant changes that many initial design decisions prove to be poor ones.

Throwaway Prototyping
Throwaway prototyping methodologies are similar to prototyping based methodologies. The main difference is that throwaway prototyping is completed during a different point in the SDLC. Has relatively thorough analysis phase.

Throwaway Prototyping-based Methodology

Category III of the System Development Methodology: Agile Development

This category focuses on streamlining the SDLC by eliminating much of the modeling and documentation overhead and the time spent on those tasks. Projects emphasize simple, iterative application development. This category uses extreme programming, which is described next.

Extreme Programming (XP)

Extreme Programming (XP) was founded on four core values:
- Communication
- Simplicity
- Feedback
- Courage
Key principles of XP include:
- Continuous testing
- Simple coding
- Close interaction with the end users to build systems very quickly

Selecting a methodology is not simple, as no one methodology is always best. Many organizations have their own standards. The next figure summarizes some important methodology selection criteria.

Criteria for Selecting a Methodology

- RAD methodologies of prototyping and throwaway prototyping are usually more appropriate when user requirements are unclear as they provide prototypes for users to interact with early in the SDLC.
Familiarity with Technology
- If the system is designed without some familiarity with the base technology, risks increase because the tools may not be capable of doing what is needed.

System Complexity
- Complex systems require careful and detailed analysis and design.
- Project teams who follow phased development-based methodologies tend to devote less attention to the analysis of the complete problem domain than they might if they were using other methodologies.

System Reliability
- System reliability is usually an important factor in system development.
- Throwaway prototyping-based methodologies are most appropriate when system reliability is a high priority.
- Prototyping-based methodologies are generally not a good choice as they lack careful analysis and design phases.

Short Time Schedules
- RAD-based methodologies are well suited for projects with short time schedules as they increase speed.
- Waterfall-based methodologies are the worst choice when time is essential as they do not allow for easy schedule changes.

Schedule Visibility
- RAD-based methodologies move many of the critical design decisions earlier in the project; consequently, this helps project managers recognize and address risk factors and keep expectations high.

Project Team Skills and Roles
- Projects should consist of a variety of skilled individuals in order for a system to be successful.
- Six major skill sets an analyst should have include:
 - Technical
 - Business
 - Analytical
 - Interpersonal
 - Management
 - Ethical
Categories of Analysts

- Business Analyst
- Systems Analyst
- Infrastructure Analyst
- Change Management Analyst
- Project Manager

Project Team Roles

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business analyst</td>
<td>Analyzing the key business aspects of the system</td>
</tr>
<tr>
<td>Systems analyst</td>
<td>Identifying how the system will provide business value</td>
</tr>
<tr>
<td>Infrastructure analyst</td>
<td>Designing the new business processes and policies</td>
</tr>
<tr>
<td>Change management analyst</td>
<td>Ensuring the system conforms to information systems standards</td>
</tr>
<tr>
<td>Project manager</td>
<td>Managing the teams of analysts, programmers, technical writers, and other specialists</td>
</tr>
</tbody>
</table>

Summary

- There are six major development methodologies: the waterfall method, the parallel development method, the phased development method, system prototyping, design prototyping, and agile development.
- There are five major team roles: business analyst, systems analyst, infrastructure analyst, change management analyst and project manager.

Copyright © 2006
John Wiley & Sons, Inc.

All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without express written permission of the copyright owner is unlawful.

Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

The purchaser may make back-up copies for his/her own use only and not for redistribution or resale.

The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.