CHAPTER 1

Introduction

1.1 Overview 1
1.2 The Main Components of a Computer 3
1.3 An Example System: Wading through the Jargon 4
1.4 Standards Organizations 15
1.5 Historical Development 16
 1.5.1 Generation Zero: Mechanical Calculating Machines (1642–1945) 17
 1.5.2 The First Generation: Vacuum Tube Computers (1945–1953) 19
 1.5.3 The Second Generation: Transistorized Computers (1954–1965) 23
 1.5.4 The Third Generation: Integrated Circuit Computers (1965–1980) 26
 1.5.5 The Fourth Generation: VLSI Computers (1980–????) 26
 1.5.6 Moore’s Law 30
1.6 The Computer Level Hierarchy 31
1.7 The von Neumann Model 34
1.8 Non-von Neumann Models 37

Chapter Summary 40
1.1 Overview 1

- Computer Organization
 - We must become familiar with how **various circuits** and components fit together to create working computer system.
 - How does a computer work?
- Computer Architecture:
 - It focuses on the structure and behavior of the computer and refers to the **logical** aspects of system implementation as seen by the programmer.
 - Computer architecture includes many elements such as **instruction sets** and formats, operation code, data types, the number and types of registers, addressing modes, main memory access methods, and various I/O mechanisms.
 - How do I design a computer?
- The computer architecture for a given machine is the combination of its **hardware** components plus its **instruction set architecture (ISA)**.
- The ISA is the agreed-upon **interface** between all the software that runs on the machine and the hardware that executes it. The ISA allows you to talk to the machine.

1.2 The Main Components of a Computer 3

- There is **no** clear distinction between matters related to computer organization and matters relevant to computer architecture.
- Principle of **Equivalence** of Hardware and Software:
 - Anything that can be done with software **can also be done** with hardware, and anything that can be done with hardware **can also be done** with software.
- At the most basic level, a computer is a device consisting of three pieces:
 - A processor to interpret and execute programs
 - A memory to store both data and programs
 - A mechanism for transferring data to and from the outside world.
1.3 An Example System: Wading through the Jargon

FIGURE 1.1 A Typical Computer Advertisement

- Intel Pentium Dual Core, 3.06 GHz
- 1333MHz 4GB DDR SDRAM
- 128KB L1 cache, 2MB L2 cache
- 500GB serial ATA hard drive (7200 RPM)
- 4 USB ports, 1 serial port, 1 parallel port, 4 PCI expansion slots (1 PCI, 1 PCI x 16, 2 PCI x 1)
- Choice of monitor: 19", 24mm AG, 1280x1024 at 75Hz or 18.5", 1280x1024 SXGA, 250 cd/m2, active matrix, 1000:1 (static), 5ms, 24-bit color (16.7 million colors), VGA/DVI input
- 16X DVD +/- RW Drive
- 1GB PCIe video card
- PCIe sound card
- Integrated 10/100/1000 Ethernet

TABLE 1.1 Common Prefixes Associated with Computer Organization and Architecture

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilo</td>
<td>K</td>
<td>10^3</td>
<td>$2^{10}=1024$</td>
<td>Milli</td>
<td>m</td>
<td>10^{-3}</td>
<td>2^{-10}</td>
</tr>
<tr>
<td>Mega</td>
<td>M</td>
<td>10^6</td>
<td>2^{20}</td>
<td>Micro</td>
<td>μ</td>
<td>10^{-6}</td>
<td>2^{-20}</td>
</tr>
<tr>
<td>Giga</td>
<td>G</td>
<td>10^9</td>
<td>2^{30}</td>
<td>Nano</td>
<td>n</td>
<td>10^{-9}</td>
<td>2^{-30}</td>
</tr>
<tr>
<td>Tera</td>
<td>T</td>
<td>10^{12}</td>
<td>2^{40}</td>
<td>Pico</td>
<td>p</td>
<td>10^{-12}</td>
<td>2^{-40}</td>
</tr>
<tr>
<td>Peta</td>
<td>P</td>
<td>10^{15}</td>
<td>2^{50}</td>
<td>Femto</td>
<td>f</td>
<td>10^{-15}</td>
<td>2^{-50}</td>
</tr>
<tr>
<td>Exa</td>
<td>E</td>
<td>10^{18}</td>
<td>2^{60}</td>
<td>Atto</td>
<td>a</td>
<td>10^{18}</td>
<td>2^{60}</td>
</tr>
<tr>
<td>Zetta</td>
<td>Z</td>
<td>10^{21}</td>
<td>2^{70}</td>
<td>Zepto</td>
<td>z</td>
<td>10^{-21}</td>
<td>2^{-70}</td>
</tr>
<tr>
<td>Yotta</td>
<td>Y</td>
<td>10^{24}</td>
<td>2^{80}</td>
<td>Yocto</td>
<td>y</td>
<td>10^{-24}</td>
<td>2^{-80}</td>
</tr>
</tbody>
</table>

- Clock frequencies are measured in cycles per second, or Hertz
 - Hertz = clock cycles per second (frequency)
 - 1MHz = 1,000,000Hz
 - Processor speeds are measured in MHz or GHz.
- Byte = a unit of storage
 - 1KB = 2^{10} = 1,024 Bytes
 - 1MB = 2^{20} = 1,048,576 Bytes
 - 1GB = 2^{30} = 1,099,511,627,776 Bytes
 - Main memory (RAM) is measured in GB
 - Disk storage is measured in GB for small systems, TB (240) for large systems.
• A bus operating at 133MHz has a cycle time of 7.52 nanoseconds:
 o 133,000,000 cycles/second = 7.52ns/cycle
 o Bus: a group of wires that moves data and instruction to various places within the computer
• Computers with large main memory capacity can run larger programs with greater speed than computers having small memories.
• SDRAM: Synchronous Dynamic Random Access Memory
 o RAM is an acronym for random access memory.
 o Random access means that memory contents can be accessed directly if you know its location.
• Cache is a type of temporary memory that can be accessed faster than RAM.
 o The cache in our system has a capacity of kilobytes (KB), which is much smaller than main memory.
 o Level 1 cache (L1): a small, fast memory cache that is built into the microprocessor chip and helps speed up access to frequently used data
 o Level 2 cache (L2): a collection of fast, built-in memory chips situated between the microprocessor and main memory
 o In Chapter 6 you will learn how cache works, and that a bigger cache isn’t always better.
• Hard Drive:
 o SATA: Serial Advanced Technology Attachment
 o EIDE: Enhanced Integrated Drive Electronics
• USB:
 o USB (Universal Serial Bus) is a popular external bus that supports Plug-and-Play (the ability to configure devices automatically) as well as hot plugging (the ability to add and remove devices while the computer is running).
• Ports:
 o Whereas the system bus is responsible for all data movement internal to the computer, ports allow movement of data to and from devices external to the computer.
• Serial ports vs. Parallel ports:
 o Serial ports transfer data by sending a series of electrical pulses across one or two data lines. Parallel ports use at least eight data lines, which are energized simultaneously to transmit data.
• Peripheral Component Interconnect (PCI) is one such I/O bus that supports the connection of multiple peripheral devices. PCI, developed by the Intel Corporation, operates at high speeds and also supports Plug-and-Play such as PCI modem and sound card.
• AGP (Accelerated Graphical Port) graphics card
1.4 Standards Organizations 15

- The Institute of Electrical and Electronic Engineers (IEEE)
 - Promotes the interests of the worldwide electrical engineering community.
 - Establishes standards for computer components, data representation, and signaling protocols, among many other things.

- The International Telecommunications Union (ITU)
 - Concerns itself with the interoperability of telecommunications systems, including data communications and telephony.

- National groups establish standards within their respective countries:
 - The American National Standards Institute (ANSI)
 - The British Standards Institution (BSI)

- The International Organization for Standardization (ISO)
 - Establishes worldwide standards for everything from screw threads to photographic film.
 - Is influential in formulating standards for computer hardware and software, including their methods of manufacture.
1.5 Historical Development

- In modern times computer evolution is usually classified into four generations according to the salient technology of the era.

1.5.1 Generation Zero: Mechanical Calculating Machines (1642–1945)

- Calculating Clock - Wilhelm Schickard (1592 - 1635).
- Pascaline - Blaise Pascal (1623 - 1662).
- Difference Engine - Charles Babbage (1791 - 1871), also designed but never built the Analytical Engine.
- Punched card tabulating machines - Herman Hollerith (1860 - 1929).

1.5.2 The First Generation: Vacuum Tube Computers (1945–1953)

- Electronic Numerical Integrator and Computer (ENIAC)
 - John Mauchly and J. Presper Eckert, University of Pennsylvania, introduced to the public in 1946
 - The first all-electronic, general-purpose digital computer.
 - This machine used 17,468 vacuum tubes, occupied 1,800 square feet of floor space, weighted 30 tons, and consumed 174 kilowatts of power.
- Vacuum tubes are still used in audio amplifiers.

1.5.3 The Second Generation: Transistorized Computers (1954–1965)

- In 1948, three researchers with Bell Laboratories – John Bardeen, Walter Brattain, and William Shockley – invented the transistor.
- Transistors consume less power than vacuum tubes, are smaller, and work more reliably.
 - Control Data Corporation (CDC) under the Seymour Cray, built CDC 6600, the world’s first supercomputer. The $10 million CDC 6600 could perform 10 million instructions per second, used 60-bit words, and had an astounding 128 kilowords of main memory.
1.5.4 The Third Generation: Integrated Circuit Computers (1965–1980)

- Jack Kilby invented the integrated circuit (IC) or microchip.
- Integrated Circuit: Multiple transistor were integrated onto on chip
- IBM 360
- DEC PDP-8 and PDP-11
- The Cray-1, in stark contrast to the CDC 6600, could execute over 160 million instructions per second and could support 8 megabytes of memory.

1.5.5 The Fourth Generation: VLSI Computers (1980–????)

- VLSI (Very Large Scale Integration): more than 10,000 components per chip.
- ENIAC-on-a-chip project, 1997
- VLSI allowed Intel, in 1971, to create the world’s first microprocessor, the 4004, which was a fully functional, 4-bit system that ran at 108KHz.
- Intel also introduced the random access memory (RAM) chip, accommodating 4 kilobits of memory on a single chip.

1.5.6 Moore’s Law

- Visit
- In 1965, Intel founder Gordon Moore stated, “The density of transistors in an integrated circuit will double every year.”
- The current version of this prediction is usually conveyed as “the density of silicon chips doubles very 18 months.”
1.6 The Computer Level Hierarchy

We call the hypothetical computer at each level a **virtual machine**.

Each level’s virtual machine executes its own particular set of instructions, calling upon machines at lower levels to carry out the tasks when necessary.

Level 6, the User Level, is composed of applications such as world processors, graphics packages, or games.

Level 5, the High-Level Language Level, consists of languages such as C, C++, FORTRAN, Lisp, Pascal, and Prolog.

- These languages must be translated (using either a compiler or an interpreter) to a language the machine can understand.
- Compiled languages are translated into assembly language and then assembled into machine code (they are translated to the next lower level).
- Even though a programmer must know about data types and the instructions available for those types, she need not know about how those types are actually implemented.

Level 4, the Assembly Language Level, encompasses some type of assembly language.

- One-to-one translation: **One** assembly language instruction is translated to exactly one machine language.
• Level 3, the System Software Level, deals with operating system instructions.
 o This level is responsible for multiprogramming, protecting memory, synchronizing processes, and various other important functions.
 o Often, instructions translated from assembly language to machine language are passed through this level unmodified.
• Level 2, the Instruction Set Architecture (ISA) or Machine Level, consists of the machine language recognized by the particular architecture of the computer system. We will study ISA in Chapter 4 and 5.
• Level 1, the Control Level, is where a control unit makes sure that instructions are decoded and executed properly and that data is moved where and when it should be.
 o Control units can be designed in one of two ways: They can be hardwired or they can be microprogrammed.
 o In hardwired control units, control signals emanated from blocks of digital logic components: fast, very difficult to modify
 o A microprogram is a program written in a low-level language that is implemented directly by the hardware: slow, easily to modify
• Level 0, the Digital Logic Level, is where we find the physical components to the computer system: the gates and wires. Chapter 3 presents the Digital Logic Level.
1.7 The von Neumann Model

Today’s stored-program computers have the following characteristics:

- Three hardware systems:
 - A central processing unit (CPU)
 - A main memory system
 - An I/O system
- The capacity to carry out sequential instruction processing.
- A single data path between the CPU and main memory.
 - This single path is known as the von Neumann bottleneck.

FIGURE 1.4 The von Neumann Architecture

FIGURE 1.5 The Modified von Neumann Architecture, Adding a System Bus
1.8 Non-von Neumann Models 37

- Parallel processors are technically not classified as von Neumann machines because they do not process instructions sequentially.
- Parallel computing
 - The first parallel-processing systems were built in late 1960s and had only two processors.
 - In 1999, IBM announced the construction of a supercomputer called the Blue Gene. The massively parallel computer contains over 1 million processors, each with its own dedicated memory.
- "Dual-core" is different from "Dual processor"
 - Dual processor machines, for example, have two processors but each processor plugs into the motherboard separately.
 - All cores in multicore machines are integrated into the same chip.
- Multicore architectures are parallel processing machines that allow for multiple processing units (often called cores) on a single chip.
- Multithreaded applications spread mini-processes, threads, across one or more processors for increased throughput.
 - Programs are divided up into thread, which can be thought of as mini-processes.
 - For example, a web browser is multithreaded; one thread can download text, which each image is controlled and downloaded by a separated thread.

Chapter Summary 40

- A brief overview of computer organization and computer architecture.
- Principle of Equivalence of Hardware and Software
- Moore’s Law
- The von Neumann architecture is predominant in today’s general-purpose computers.