IT 264
INDUSTRIAL FLUID POWR
SYLLABUS

Spring 2008

Instructor:
Mr. James Stutts

Office: Room 210E, Anzalone Hall
Phone: Office: (985) 549-3794
Office Hours: 11:00 – 12:00 & 3:00 – 5:00 MW
10:00 – 12:00 TTH
At other times by appointment
E-mail: jsstutts@selu.edu

Course Description:
Theory and practice of hydraulic and pneumatic power for industrial production. Functional examination of units: pumps, valves, boosters, etc. Simulated systems used to emphasize design and other industrial materials. Three hours of credit will be awarded for the successful completion of this course.

Course Objectives:

1. To instill within each student a positive safety attitude with regard to the design, construction, operation, and maintenance of fluid power systems.

2. To provide students with knowledge of the applications of fluid power in process, construction and manufacturing industries.

3. To provide students with an understanding of the physical laws and principles that governs the behavior of fluid power systems.

4. To provide students with an understanding of the fluids and components utilized in modern industrial fluid power systems.

5. To develop within each student a measurable degree of competence in the design, construction and operation of fluid power circuits.
Course materials:

Lab Manual: Fluid Power Experiments will be provided at the appropriate times.

Grades:

1. Grades will be assigned according with the departmental scale.

 93-100 = A, Superior
 85-92 = B, Very Good
 77-84 = C, Average
 69-76 = D, Below Average
 0-68 = F, Failure

 Note: Students **MUST** score a “C” or above in all courses within their major. Otherwise, they must repeat the course. **A 10% Grade penalty for each day an assignment is late. A zero will be given after 10 days.**

2. Basis for assigning grades:

 a.) Tests (4)
 300 – 400 Points

 Note: All students are to take tests on the specified date and time. Students with unexcused absences will **Not** be able to make-up tests, quizzes and lab assignments! A grade of **Zero** (0) will be assigned!

 b.) Quizzes
 30-60 points

 c.) Laboratory grade
 100 points

 Note: Ninety points of the lab grade will be awarded for the written laboratory assignments. Ten additional points will be awarded at the discretion of the instructor for safe and efficient work habits, time management, the proper use of tools and equipment, and the ability of the student to work as an integral part of a team. **If you have any problem with this grading system, please make an appointment to talk with me immediately!**

 d.) Article reviews
 20 points ea.
Important Dates and Notes:

1. Students will **NOT** automatically be dropped from class. Students who choose to drop must do so by the semester deadline! **Friday, March 14, 2008** is the last day to **withdraw** from classes.

2. The **final exam** for MW class will be on **Thursday, May 15, 2008 from 2:45-4:45!!!** The **final exam** for TTH class will be on **Thursday, May 15, 2008 from 8:00-10:00!!!**

3. **Monday, March 17**, through **Thursday, March 20, 2008** is **early registration** for the **Summer, 2008** Semester.

4. **Monday, March 31**, through **Friday, April 4, 2008** is **early registration** for the **Fall, 2008** Semester.

5. If you are a qualified student with a disability seeking accommodations under the Americans with Disabilities Act, you are required to **self-identify** with the office of Disability Services, Room 203, Student Union. No accommodations will be granted without documentation from the Office of Disability Services.

6. **Student behavior/Classroom decorum**: "Free discussion, inquiry, and expression is encouraged in this class. Classroom behavior that interferes with either (a) the instructor’s ability to conduct the class or (b) the ability of students to benefit from the instruction is not acceptable. Examples may include routinely entering class late or departing early; use of beepers, cellular telephones' or other electronic devices; repeatedly talking in class without being recognized; talking while others are speaking; or arguing in a way that is crossing the civility line." In the event of a situation where a student legitimately needs to carry a beeper/cellular telephone to class, prior notice and **approval by the instructor** is required. Otherwise, **ALL BEEPERS, CELLULAR TELEPHONES' AND OTHER ELECTRONIC DEVICES ARE TO BE TURNED OFF BEFORE YOU ENTER THE CLASSROOM.**

 Classroom behavior that is deemed inappropriate and cannot be resolved by the student and the faculty member may be referred to the Office of Judicial Affairs for administrative or disciplinary review as per the Code of Student Conduct which may be found at http://WWW.SELU.EDU/Student Affairs/Handbook/.

7. **Academic Integrity**: Students should note that repercussions of academic integrity are discussed in the university catalogue. “Cheating on examinations, plagiarism, improper acknowledgment of sources in essays and the use of a single essay or paper in more than one course without permission are considered very serious offenses and shall be grounds for disciplinary action”.

The students Southeastern Louisiana University e-mail address **MUST** be used for all e-mail communication between students and faculty/administration/staff. Students are encouraged to check their Southeastern e-mail frequently for important communications from the university.

University policy states that the lab is not a place for children. Students are not to bring their children to the lab.

Course Requirements:

1. Adherence to Departmental policies and procedures, a copy of which you were provided.

2. Regular and punctual class attendance. Students who have unexcused absences will receive the grade of zero ("0") for all tests, quizzes, and/or lab experiments missed.

3. Students must provide their own safety glasses or goggles. Glasses or goggles **MUST** meet standard Z87 to be considered “Safety” glasses or goggles. Only those glasses or goggles with Z87 clearly imprinted on them are acceptable. Also, they **MUST** be equipped with side shields, **MUST** be clear and untinted, and **MUST** be in good condition. All forms of eye protection **MUST** be inspected and approved by the instructor prior to their initial use in the lab.

4. Sandals or other forms of “open” footwear are **NOT** permitted in the fluid power lab.

5. Students who are not properly attired or do not possess approved eye protection will **NOT** be allowed in the lab and will receive a grade of zero (0) for the days’ activity. Students must realize that their safety and that of their classmates is most important!

6. Students are to complete lab assignments in a timely fashion. Students are to turn in the study questions of each lab experiment completed by the beginning of the next class period. Students are to begin and end labwork according to the class schedule. Students, who fail to utilize their time effectively, perform incomplete experiments, who begin their work late, who leave the lab early or who submit their experiments late will have their lab grade penalized.
COURSE OUTLINE

1 Introduction to the Course
1.1 What is Fluid Power? 1
1.2 History of Fluid Power 3
1.3 Advantages of Fluid Power 6
1.4 Applications of Fluid Power 10
1.5 Components of a Fluid Power System 14
1.6 The Fluid Power Industry 17

2 Physical Properties of Hydraulic Fluids 21
2.1 Introduction 21
2.2 Fluids: Liquids and Gases 23
2.3 Specific Weight, Density, and Specific Gravity 25
2.4 Force, Pressure, and Head 30
2.5 The SI Metric System 37
2.6 Bulk Modulus 40
2.7 Viscosity 41
2.8 Viscosity Index 48
2.9 Illustrative Examples Using the SI Metric System 51
2.10 Key Equations 52

3 Energy and Power in Hydraulic Systems 57
3.1 Introduction 57
3.2 Review of Mechanics 59
3.3 Multiplication of Force (Pascal’s Law) 65
3.4 Applications of Pascal’s Law 69
3.5 Conservation of Energy 76
3.6 The Continuity Equation 77
3.7 Hydraulic Power 79
3.8 Bernoulli’s Equation 84
3.9 Torricelli’s Theorem 91
3.10 The Siphon 93
3.11 Energy, Power, and Flow Rate in the SI Metric System 94
3.12 Illustrative Examples Using the SI Metric System 96
3.13 Key Equations 99

4 Frictional Losses in Hydraulic Pipelines 111
4.1 Introduction 111
4.2 Laminar and Turbulent Flow 113
4.3 Reynolds Number 114
4.4 Darcy’s Equation 117
4.5 Frictional Losses in Laminar Flow 117
4.6 Frictional Losses in Turbulent Flow 118
4.7 Losses in Valves and Fittings 122
4.8 Equivalent-Length Technique 127
4.9 Hydraulic Circuit Analysis 128
4.10 Hydraulic Circuit Analysis Using the SI Metric System 131
4.11 Key Equations 134

5 The Source of Hydraulic Power: Pumps 141
5.1 Introduction 142
5.2 Pumping Theory 144
5.3 Pump Classification 145
5.4 Gear Pumps 148
5.5 Vane Pumps 156
5.6 Piston Pumps 162
5.7 Pump Performance 171
5.8 Pump Noise 178
5.9 Pump Selection 184
5.10 Pump Performance Ratings in Metric Units 185
5.11 Key Equations 188

6 Hydraulic Cylinders and Cushioning Devices 195
6.1 Introduction 195
6.2 Hydraulic cylinder operating Features 197
6.3 Cylinder Mountings and Mechanical Linkages 199
6.4 Cylinder Force, Velocity, and Power 201
6.5 Cylinder Loads due to Moving of Weights 204
6.6 Special Cylinder designs 207
6.7 Cylinder Loading Through Mechanical Linkages 207
6.8 Hydraulic Cylinder Cushions 213
6.9 Hydraulic Shock Absorbers 216
6.10 Key Equations 220

7 Hydraulic Motors 227
7.1 Introduction 227
7.2 Limited Rotation Hydraulic Motors 230
7.3 Gear Motors 232
7.4 Vane Motors 235
7.5 Piston Motors 238
7.6 Hydraulic Motor Theoretical Torque, Power, and Flow Rate 240
7.7 Hydraulic Motor Performance 244
7.8 Hydrostatic Transmissions 248
7.9 Hydraulic Motor Performance in Metric Units 251
7.10 Key Equations 253

8 Hydraulic Valves
8.1 Introduction 261
8.2 Directional Control Valves 262
8.3 Pressure Control Valves 275
8.4 Flow Control Valves 284
8.5 Servo Valves 292
8.6 Proportional Control Valves 295
8.7 Cartridge Valves 296
8.8 Hydraulic Fuses 303
8.9 Key Equations 304

10 Hydraulic Conductors and Fittings 349
10.1 Introduction 349
10.2 Conductor Sizing for Flow-Rate Requirements 350
10.3 Pressure Rating of Conductors 352
10.4 Steel Pipes 356
10.5 Steel Tubing 360
10.6 Plastic Tubing 365
10.7 Flexible Hoses 365
10.8 Quick Disconnect Couplings 371
10.9 Metric Steel Tubing 371
10.10 Key Equations 374

11 Ancillary Hydraulic Devices 377
11.1 Introduction 377
11.2 Reservoirs 378
11.3 Accumulators 381
11.4 Pressure Intensifiers 392
11.5 Sealing Devices 395
11.6 Heat Exchangers 406
11.7 Pressure Gages 410
11.8 Flow Meters 412
11.9 Key Equations 416

12 Maintenance of Hydraulic Systems 420
12.1 Introduction 421
12.2 Oxidation and Corrosion of Hydraulic Fluids 423
12.3 Fire-Resistant Fluids 424
12.4 Foam-Resistant Fluids 426
12.5 Fluid Lubricating Ability 426
12.6 Fluid Neutralization Number 427
12.7 Petroleum Based Versus Fire resistant Fluids 427
12.8 Maintaining and Disposing of Fluids 428
12.9 Filters and Strainers 429
12.10 Beta Ratio of Filters 434
12.11 Fluid Cleanliness Levels 436
12.12 Wear of Moving Parts Due to Solid-Particle Contamination of the Fluid 438
12.13 Problems Caused by Gases in Hydraulic Fluids 439
12.14 Troubleshooting Hydraulic Systems 442
12.15 Safety Considerations 446
12.16 Environmental Issues 446
12.17 Key Equations 447

13 Pneumatics: Air Preparation and Components 450
13.1 Introduction 451
13.2 Properties of Air 452
13.3 The Perfect Gas Laws 454
13.4 Compressors 460
13.5 Fluid Conditioners 469
13.6 Analysis of Moisture Removal From Air 477
13.7 Air Flow Rate Control with Orifices 480
13.8 Air Control Valves 482
13.9 Pneumatic Actuators 490
13.10 Key Equations 498

SUPPLEMENTAL INFORMATION

14 Gears: Types and Applications
14.1 Spur
14.2 Helical
14.3 Herringbone
14.4 Bevel
14.5 Miter

15 Gear Systems: Types and Applications
15.1 Rack and Pinion
15.2 Ring and Pinion
15.3 Planetary
15.4 Worm

16 Types of friction
16.1 Dry
16.2 Greasy
16.3 Viscous

17 Bearings: Types and Applications
17.1 Sleeve
17.2 Precision Insert
17.3 Anti-friction
17.3.1 Ball
17.3.2 Roller
17.3.3 Tapered Roller
17.3.4 Needle
17.3.5 Torrington
18 Types of loads
18.1 Radial
18.2 Thrust

19 Simple Machines: Types and Applications
19.1 Lever
19.2 Inclined Plane
19.3 Screw
19.4 Wheel and Axle
19.5 Pulleys

BIBLIOGRAPHY

