Skew Product Actions of Semi-Direct Product Groups

Edgar N. Reyes

Introduction

Let f be a homomorphism from a second countable locally compact group G into the continuous automorphisms of a second countable compact group K. Let $g * k = f(g)(k)$ and suppose further the mapping given by $(g, k) \rightarrow g * k$ is continuous from $G \times K$ into K, $g \in G, k \in K$. Then the cartesian product $K \times G$ becomes a group with multiplication given by $(k_1, g_1)(k_2, g_2) = (k_1 g_1 k_2, g_1 g_2)$, where $(k_i, g_i) \in K \times G, i = 1, 2$. We denote this semi-direct product group by $K \rtimes_s G$.

Let (S, μ), a standard Borel $K \times_s G$-space with a probability invariant measure μ. In this paper we state necessary and sufficient conditions so the quotient Borel $K \times_s G$-mapping from S into the space of K-orbits in S has relative discrete spectrum. These conditions are in terms of the stabilizers and the natural action of G on the dual \hat{K} of K. (We remind the reader \hat{K} is the set of unitary equivalence classes of irreducible unitary representations of K).

Choose a Borel subset \overline{S} of S that meets each K-orbit in S exactly once. Let $p : (S, \mu) \rightarrow (\overline{S}, \overline{\mu})$ be a mapping given by $p(s) = \overline{s}$ where \overline{s} is the unique point in \overline{S} that meets the K-orbit $s \cdot K$ of s and $\overline{\mu} = \mu \circ p^{-1}$.

$K \times_s G$ induces a natural action on the space of K-orbits in S. Since \overline{S} is identified canonically with the space of K-orbits then $K \times_s G$ acts on \overline{S}. We will denote this new action by \circ. Namely, K acts trivially on \overline{S} and G acts on \overline{S} by $\overline{\pi} \circ g \equiv p(\overline{s} \cdot g)$ where \cdot is the original action of $K \times_s G$ on S. Then (S, μ) becomes an extension of $(\overline{S}, \overline{\mu})$. (see [2] for definitions).

We will assume the stabilizers in K of each \overline{s} in \overline{S} are all the same. For each $\overline{s} \in \overline{S}$, let $L = \{k \in K : \overline{s} \cdot k = \overline{s}\}$ and let L^\perp be the set of all representations γ in \hat{K} whose restriction to L contains the identity one dimensional representation as a direct summand. Let G act on \hat{K} by $(\pi \cdot g)(k) = \pi(g \cdot k)$ where $(k, g) \in K \times_s G, \pi \in \hat{K}$. The main result of this paper is the following.

Theorem: The extension $p : S \rightarrow \overline{S}$ has relatively discrete spectrum if and only if $\gamma \cdot G$ is a finite subset of \hat{K} for each $\gamma \in L^\perp$.

To simplify the proof of the Theorem we first have a short discussion on the cocycle representation associated to the extension p. Let $\mu = \int \mu_\pi \, d\overline{\mu}(\overline{s})$ be a disintegration of μ over the fibers of p where μ_π is a K-invariant measure on S concentrated on $\overline{s} \cdot K$, and if $\mu_\pi \cdot g$ is the measure given by $(\mu_\pi \cdot g)(E) \equiv \mu_\pi(E \cdot g^{-1})$, E a Borel subset of S, then $\mu_{\overline{s} \cdot g} = \mu_{\overline{s}} \cdot g$, for each $(\overline{s}, g) \in \overline{S} \times G$.

1
The natural cocycle representation R associated to p acts on the Hilbert bundle $\{L^2(S, \mu_\pi) : \pi \in \overline{S}\}$ over \overline{S}. For each $(k, g) \in K \times_s G$ and $\pi \in \overline{S}$, $R(\pi, (k, g)) : L^2(S, \mu_{\pi,g}) \to L^2(S, \mu_\pi)$ is a unitary operator given by (see [2], page 382):

$$R(\pi, (k, g)) h(s_1) = h(s_1 \cdot (k, g))$$

where $s_1 \in S, h \in L^2(S, \mu_{\pi,g})$.

Consider the bijection between S and $\{(\pi, Lk) : \pi \in \overline{S}, k \in K\}$ given by $s \mapsto (\pi, Lk)$ where $\pi \cdot k = s$. If $(k_1, g) \in K \times_s G$ then the corresponding action of $K \times_s G$ on $\{(\pi, Lk) : \pi \in \overline{S}, k \in K\}$ is given by

1. $(\pi, Lk) \cdot k_1 = (\pi, Lkk_1)$

and

2. $(\pi, Lk) \cdot g = (\pi \circ g, Lb(\pi, g)(g^{-1} \cdot k))$ for some $b(\pi, g) \in K$ where $\pi \circ g \cdot b(\pi, g) = \pi \cdot g$.

Let $\psi_\pi : L\backslash K \to \pi \cdot K$ be the mapping given by $\psi_\pi(Lk_1) = \pi \cdot k_1$. If m is the unique K-invariant probability measure on $L\backslash K$ then there is a non-negative real-valued Borel function ϕ defined on \overline{S} satisfying $\mu_\pi = \phi(\pi) \cdot (m \circ \psi_\pi^{-1})$ for each $\pi \in \overline{S}$. Since G acts ergodically on (\overline{S}, π) and ϕ is G-invariant, then $\phi(\pi) = 1$ for π-a.e. π.

For each $\pi \in \overline{S}$ define a linear mapping

$$(\psi_\pi)_* : L^2(S, \mu_\pi) \to L^2(L\backslash K, m)$$

by $(\psi_\pi)_*(h) = h \circ \psi_\pi, h \in L^2(S, \mu_\pi)$. $(\psi_\pi)_*$ is a unitary operator if $\phi(\pi) = 1$. Hence, for each $(k, g) \in K \times_s G$ we can realize $R(\pi, (k, g)) : L^2(L\backslash K, m) \to L^2(L\backslash K, m)$ as a unitary operator for π-a.e. π, given by

$$R(\pi, (k, g)) h(Lk_1) = h(Lb(\pi, g)(g^{-1} \cdot (k_1 k)))$$

where $h \in L^2(L\backslash K, m), Lk_1 \in L\backslash K$. If e is the identity element then $b(\pi, e) \in L$ for any $\pi \in \overline{S}$. Thus, $R(\pi, k)$ is independent of π for any $k \in K$. Let π be a unitary representation of K on $L^2(L\backslash K, m)$ defined by $\pi(k) = R(\pi, k), \pi \in \overline{S}, k \in K$.

Proof of the Theorem

Let us assume the orbit $\gamma \cdot G$ is finite for each $\gamma \in L^+$. By the Frobenius Reciprocity Theorem, $L^2(L\backslash K, m) = \bigoplus_{\gamma \in L^+} L^2_\gamma(L\backslash K)$ is an orthogonal direct sum of its non-zero finite dimensional isotypic summands $L^2_\gamma(L\backslash K)$ indexed by L^+. Moreover, $L^2_\gamma(L\backslash K)$ is the image of the γ-primary projection P_γ of π.

P_γ is given by $\dim(\gamma) \int_K \chi_\gamma(k^{-1}\pi(k))dk$ where $\chi_\gamma(\cdot)$ is the character associated to γ.

(See [1], Theorem 5.10). By the cocycle identity, a short calculation shows that for each (k, k_1, g) in $K \times K \times_s G$ we have for a.e. π

$$R(\pi, (k, g)) \pi(k_1) = \pi(k(g \cdot k_1)) R(\pi, (k, g)).$$
Then one can verify that $P_{γ,g^{-1}} R(ς,(k,g)) = R(ς,(k,g))P_γ$ holds for almost all $ς$, for each $(k,g,γ)$ in $K × s G × ̄K$ and $k_1 ∈ K$.

In particular, $R(ς,(k,g))L^2(Ł\backslash K) ⊆ L^2(Ł\backslash K)$ for a.e. $ς$, for each $(k,g,γ) ∈ K × s G × ̄K$. If $θ$ is a G-orbit in ̄K then for each $(k,g) ∈ K × s G$, \(R(ς,(k,g)) \left(\bigoplus_{γ ∈ θ} L^2(Ł\backslash K) \right) = \bigoplus_{γ ∈ θ} L^2(Ł\backslash K) \) for a.e. $ς$ since $R(ς,(k,g))$ is a unitary operator for a.e. $ς$.

Hence, the trivial bundle $L^2(Ł\backslash K,m)$ over ̄S is a direct sum of finite dimensional invariant Hilbert subbundles of the form $\left\{ \bigoplus_{γ ∈ θ} L^2(Ł\backslash K) : θ ∈ ̄S \right\}$. In particular, the extension $p : S → ̄S$ has relative discrete spectrum.

Conversely, suppose $p : S → ̄S$ is an extension with relative discrete spectrum. Thus, $L^2(Ł\backslash K,m)$ is a direct sum of finite dimensional invariant Hilbert subbundles $\{ V_i(ς) : θ ∈ ̄S \}$ over ̄S for $i = 1, 2, ...$. Thus, for each i and $k ∈ K$, $R(ς,k)V_i(ς) = V_i(ς)$ for ̄S-a.e. $ς$. Since the only connul Borel multiplicative subset of K is K itself then for ̄S-a.e. $ς$, $R(ς,k)V_i(ς) = V_i(ς)$ for all i and $k ∈ K$. Hence, for ̄S-a.e. $ς$, the mapping $k → R(ς,k)$ is a unitary representation of K on $V_i(ς)$ for all i. If $R(ς,k)$ defines a unitary representation of K on $V_i(ς)$, let $Λ(i,ς) = \{ γ ∈ ̄K : V_i(ς) > γ \}$ where $V_i(ς) > γ$ if and only if the $γ$-isotypical summand in $V_i(ς)$ is non-zero. Otherwise, if $R(ς,k)$ does not define a representation on $V_i(ς)$ let $Λ(i,ς)$ be the empty set.

Fix $γ_0 ∈ L^1$. Since $\bigoplus_j V_j(ς) = L^2(Ł\backslash K) = \bigoplus_{γ ∈ L^2} L^2(Ł\backslash K)$ is an orthogonal direct sum for ̄S-a.e. $ς$, then we can choose an index i_0 such that the following set has positive ̄S-measure

$$\{ θ ∈ ̄S : k → R(ς,k) \text{ defines a representation of } K \text{ on } V_{i_0}(ς) \text{ and } γ_0 < V_{i_0}(ς) \}.$$

Furthermore, this set with positive measure can be written as a countable union of sets indexed by the finite subsets F of ̄K containing $γ_0$, namely

$$\bigcup_{F \in F} \{ θ ∈ ̄S : k → R(ς,k) \text{ defines a representation of } K \text{ on } V_{i_0}(ς) \text{ and } Λ(i_0,ς) = F \}.$$

Given $γ ∈ ̄K$ and $(k,g) ∈ K × s G$, $γ < V_0(ς)g$ if and only if $γ · g^{-1} < V_i(ς)$ for ̄S-a.e. $ς$ since $R(ς,(k,g))L^2(Ł\backslash K) = L^2(Ł\backslash K)$ for a.e. $ς$.

Define a Borel mapping $η$ from ̄S into the finite subsets of ̄K by $η(ς) = Λ(i_0,ς), θ ∈ ̄S$. Since $η$ is G-equivariant and ̄S is a G-invariant measure then $(̄S ◦ η^{-1})$ is a G-invariant probability measure on the finite subsets of $̄K$. Choose a finite subset F of ̄K containing $γ_0$ such that

$$0 < ̄S \{ θ ∈ ̄S : k → R(ς,k) \text{ defines a representation of } K \text{ on } V_{i_0}(ς) \text{ and } Λ(i_0,ς) = F \}.$$

Hence, $(̄S ◦ η^{-1})(F) > 0$ and the G-orbit of $γ_0$ in $̄K$ is finite. This completes the proof of the Theorem.
The measure μ on S being invariant is crucial to our Theorem. To show this we exhibit an example of an extension $p : S \to \overline{S}$ with a quasiinvariant measure that is not invariant and for which the Theorem fails.

Example: The special linear group $SL(2, \mathbb{Z})$ with integer entries acts on the 2-torus T^2 by automorphisms. Namely, if $A \in SL(2, \mathbb{Z})$ and if we set $\exp(x, y) = (e^{2\pi ix}, e^{2\pi iy}) \in T^2$ then this action is defined by $A \cdot \exp(x, y) = \exp((x, y) \cdot A^t)$, where $(x, y) \in \mathbb{R}^2$ and A^t is the transpose of A. With these we can form a semi-direct product group $T^2 \times_s SL(2, \mathbb{Z})$.

Each $(n, m) \in \mathbb{Z}^2$ defines a character of T^2 and this is given by $(n, m)\exp(x, y) = e^{2\pi i(nx+my)}$. $SL(2, \mathbb{Z})$ acts on the dual \mathbb{Z}^2 of T^2. In particular, if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$, $(n, m) \in \mathbb{Z}^2, x, y \in \mathbb{R}$ then $((n, m) \cdot A) \exp(x, y) \equiv (n, m)(A \cdot \exp(x, y))$. There are infinite $SL(2, \mathbb{Z})$-orbits in the dual of T^2 since a direct calculation shows $(n, m) \cdot A \equiv (an + cm, bn + dm) \in \mathbb{Z}^2$.

Let ν be a quasiinvariant probability measure on $SL(2, \mathbb{Z})$ i.e. $\nu(F) = 0$ if and only if $\nu(F \cdot A) = 0$ for any $A \in SL(2, \mathbb{Z}), F \subseteq SL(2, \mathbb{Z})$. Let S be the measure space $T^2 \times SL(2, \mathbb{Z})$ with the product measure $\mu \times \nu$ where μ is the normalized Haar measure on T^2. If $(k, A) \in T^2 \times_s SL(2, \mathbb{Z})$ and $(k_1, w) \in S$ then we let $T^2 \times_s SL(2, \mathbb{Z})$ act on S by

$$(k_1, w) \cdot (k, A) \equiv (A^{-1} \cdot (k_1)k, wA) \in S$$

where $A^{-1} \cdot (k_1)k$ is the action of $SL(2, \mathbb{Z})$ on T^2 and wA is matrix multiplication. Let $\overline{\mathfrak{f}} = \{1\} \times SL(2, \mathbb{Z})$ and note that $\overline{\mathfrak{f}}$ meets each T^2-orbit in S exactly once. Without loss of generality we may assume $\overline{\mathfrak{f}}$ is $SL(2, \mathbb{Z})$ and is equipped with the measure ν.

We will show the extension $p : S \to \overline{S}$ given by $(k, w) \to w$ has relative discrete spectrum. Let $\mu \times \nu = \int_{\overline{\mathfrak{f}}} \mu \times \delta_w \; d\nu(w)$ be a disintegration of $\mu \times \nu$ over the fibers of p where δ_w is the point-mass measure on $SL(2, \mathbb{Z})$ concentrated on w. One can show $(\mu \times \delta_w) \cdot A = \mu \times \delta_{wA}$ and $L = \{1, 1\}$ is the stabilizer in T^2 of each element of $\overline{\mathfrak{f}}$. Let R be the cocycle representation associated to the extension p. Then for each $(k, A) \in T^2 \times_s SL(2, \mathbb{Z})$ and $w \in SL(2, \mathbb{Z})$, $R(w, (k, A)) : L^2(T^2, \mu) \to L^2(T^2, \mu)$ is a unitary operator given by

$$R(w, (k, A))h(k_1) = h(A^{-1} \cdot (k_1)k)$$

for each $h \in L^2(T^2, \mu), k_1 \in T^2$.

In particular, if $h = (n, m) \in \mathbb{Z}^2$ is an irreducible character of T^2 then a direct calculation shows that $R((1, w), (1, A))(n, m)$ is the irreducible character of T^2 defined by the matrix product $(n, m) \cdot A^{-1}$. Denote the complex linear span of the character (n, m) of T^2 by $\mathfrak{c} : (n, m)$. For each $(n, m) \in \mathbb{Z}^2$, let us define a one dimensional invariant Hilbert bundle $\{H_{n,m}(w) : w \in \overline{\mathfrak{f}}\}$ over $\overline{\mathfrak{f}}$ by setting $H_{n,m}(w) = \mathfrak{c}((n, m) \cdot w)$.

For any $A \in SL(2, \mathbb{Z})$,

$$L^2(T^2, \mu) = \bigoplus_{(n,m) \in \mathbb{Z}^2} C \cdot ((n,m) \cdot A)$$

is a well known orthogonal direct sum. Thus, the trivial bundle $L^2(T^2, \mu)$ over \mathbb{S} is a direct sum of the Hilbert bundles $\{H_{n,m}(w) : w \in \mathbb{S}\}$ where the sum is indexed over \mathbb{Z}^2. Hence, the extension $p : S \to \mathbb{S}$ has relative discrete spectrum.

Finally, let us describe the ergodic actions of $K \times_s G$ which leave a probability measure invariant. Suppose $G \cdot \gamma$ is a finite orbit for each $\gamma \in L^\perp$. Then S is essentially given by a skew-product action defined by a cocycle. (See [2], Theorem 4.3). In particular, there exist a compact group M, a closed subgroup M_0 of M, a cocycle $\beta : \mathbb{S} \times K \times_s G \to M$ with Mackey dense-range such that S and $\mathbb{S} \times M_0 \backslash M$ are isomorphic $K \times_s G$-spaces. The $K \times_s G$-action on $\mathbb{S} \times M_0 \backslash M$ is given by $(\pi, M_0 m) \cdot (k,g) = (\pi \circ g, M_0 m \beta(\pi, (k,g))$ where $(\pi, M_0 m) \in \mathbb{S} \times M_0 \backslash M$, $(k,g) \in K \times_s G$.

Most of the results of this paper are part of the author’s dissertation and I would like to extend my gratitude to my advisor, Dr. Ray Fabec, for his wise guidance and generosity.

REFERENCES

2. R. Zimmer, Extensions of Ergodic Group Actions,

Department of Mathematics,
Southeastern Louisiana University
Hammond, Louisiana 70402