Involutions on a group of Möbius transformations

1 Möbius transformations

For $v, w \in \mathbb{R}^n$, let $v = (v_1, \ldots, v_n)$ with $v_i \in \mathbb{R}, 1 \leq i \leq n$. Let the Euclidean inner-product be denoted by

$$K(v, w) = \sum_{i=1}^{n} v_i w_i.$$

Let $\mathbb{R}^n = \mathbb{R}^n \cup \{\infty\}$, and let $B = \{x \in \mathbb{R}^n : \|x\| < 1\}$ be the open unit ball. Let $GM(\mathbb{R}^n)$ denote the group of Möbius transformations of \mathbb{R}^n [1]. Consider the group of Möbius transformations of \mathbb{R}^n that leave the open ball B invariant, namely,

$$GM(B) = \{\phi \in GM(\mathbb{R}^n) : \phi(B) = B\}.$$

Let $\text{Cl}(n)$ be the real Clifford algebra generated by \mathbb{R}^n such that

$$vw + uv = -2K(v, w).$$

(1)

Every $\psi \in GM(\mathbb{R}^n)$ may be expressed as a pseudo linear fractional transformation [9]. That is, there is a Vahlen matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with entries in $\text{Cl}(n)$ satisfying certain restrictions on the entries of A such that $\psi(x) = (ax + b)(cx + d)^{-1}, x \in \mathbb{R}^n$, and $cx + d \neq 0$.

Let $O(n)$ be the real orthogonal group, i.e., the group of invertible linear transformations of \mathbb{R}^n that preserve the inner-product K. For any $v \in \mathbb{R}^n$, let $v^\perp = \{x \in \mathbb{R}^n : K(x, v) = 0\}$, span($v$) = $\{\alpha v : \alpha \in \mathbb{R}\}$, and let $\|v\| = K(v, v)^{1/2}$ be the Euclidean norm. Suppose v is a unit vector, i.e., $\|v\| = 1$. Let $f^v \in O(n)$ satisfy $f^v(v) = -v$, and $f^v(x) = x$ whenever $x \in v^\perp$. We set $f^v(\infty) = \infty$. Since $v^2 = -1$ and $xv = -vx$ if $x \in v^\perp$, we obtain $f^v(x) = xvx$ for all $x \in \mathbb{R}^n$. Applying (1), we obtain a well-known identity

$$f^v(x) = x - 2K(x, v)v, x \in \mathbb{R}^n.$$

(2)

Since $v^{-1} = -v$, a Vahlen matrix for f^v is $\begin{pmatrix} v & 0 \\ 0 & -v \end{pmatrix}$.

If $a \in B$ and $a \neq 0$, let $a^\dagger = a/\|a\|^2$, and set $r_a = \sqrt{\|a\|^2 - 1}$. Let $S_a = S(a^\dagger, r_a)$ be the sphere centered at a^\dagger, and of radius r_a. The reflection σ_a about the sphere S_a is given by

$$\sigma_a(x) = a^\dagger + r_a^2(x - a^\dagger)^\dagger, x \neq a^\dagger.$$

(3)

Set $\sigma_a(a^\dagger) = \infty$. Note, $ww^\dagger = -1$ if $w \neq 0$. Rewriting, if $x \neq a^\dagger$, we find

$$\sigma_a(x) = (a^\dagger(x - a^\dagger) - (\|a\|^2 - 1))(x - a^\dagger)^{-1}$$

$$= (a^\dagger x + 1)(x - a^\dagger)^{-1}.$$
Then a Vahlen matrix for \(\sigma_a \) is \[
\begin{pmatrix}
a^\dagger & 1 \\
1 & -a^\dagger
\end{pmatrix}.
\]
Let \(T_a = \sigma_a f^{a/\|a\|} \in GM(B) \). If we multiply the Vahlen matrices for \(\sigma_a \) and \(f^{a/\|a\|} \), the product is \(\|a\|^{-1}\begin{pmatrix} 1 & a \\ -a & 1 \end{pmatrix} \).

Then a Vahlen matrix for \(T_a \) is \[
\begin{pmatrix}
1 & a \\
-a & 1
\end{pmatrix}.
\]
Since \(\sigma_a(0) = T_a(0) = a \), we say \(T_a \) is a translation. Since the sphere \(S_a \) is orthogonal to the boundary of open unit ball \(B \), we obtain \(T_a \in GM(B) \) \cite[Theorem 3.4.2]{1} If \(a = 0 \), set \(T_0 = I \). The next lemma is well-known in Möbius geometry.

Lemma 1 Let \(\psi \in GM(B) \). Then there is a unique pair \((a, \phi) \in B \times O(n)\) such that \(\psi = T_a \phi \).

Fix a unit vector \(v \in \mathbb{R}^n \). Consider the group involution
\[
\sigma : GM(B) \to GM(B)
\]
defined by \(\sigma(\phi) = f^v \phi f^v \), \(\phi \in GM(B) \). If \(\phi \in GM(B) \), let
\[
\phi^* = \sigma(\phi)^{-1}.
\]
If \(a \in B \), \(a \neq 0 \), and \(w \in \mathbb{R}^n \) is a unit vector, we show \(f^w \sigma_a f^w = \sigma_{f^w(a)} \). This follows easily because if we multiply the Vahlen matrices for \(f^w \), \(\sigma_a \), and \(f^w \), we find
\[
\begin{pmatrix}
w & 0 \\
0 & -w
\end{pmatrix}
\begin{pmatrix}
a^\dagger & 1 \\
1 & -a^\dagger
\end{pmatrix}
\begin{pmatrix}
w & 0 \\
0 & -w
\end{pmatrix}
= \|w\|^2
\begin{pmatrix}
\frac{f^w/\|w\|}{1}(a^\dagger) & 1 \\
1 & -\frac{f^w/\|w\|}{1}(a^\dagger)
\end{pmatrix}.
\]
Since \(\phi \in O(n) \) is a product of reflections \(f^w \), we obtain \(\phi \sigma_a \phi^{-1} = \sigma_{f^w(a)} \). A short calculation shows \(\phi f^w \phi^{-1} = f^{\phi(w)} \) for all \(\phi \in O(n) \). Then
\[
\phi T_a \phi^{-1} = (\phi \sigma_a \phi^{-1})(\phi f^{a/\|a\|} \phi^{-1}) = \sigma_{f^w(a)} f^{\phi(a/\|a\|)} = T_{\phi(a)}.
\]

Lemma 2 Let \(\phi \in O(n) \), \(a \in B \), \(a \neq 0 \), and let \(w \in \mathbb{R}^n \) be a unit vector. Then
1. \(\phi \sigma_a \phi^{-1} = \sigma_{\phi(a)} \),
2. \(\phi f^w \phi^{-1} = f^{\phi(w)} \), and
3. \(\phi T_a \phi^{-1} = T_{\phi(a)} \)

We find the next lemma useful.

Lemma 3 Let \(a_1, a_2 \in \mathbb{R}^n \) where \(a_1 \neq 0 \). Then \(a_1 a_2 \in \mathbb{R} \) iff \(a_2 \in \text{span}(a_1) \).

Proof Let \(a_1 a_2 \in \mathbb{R} \). Since \(a_1^{-1} = -a_1 \|a_1\|^{-2} \), we find
\[
a_1^{-1} + a_2 = a_1^{-1}(1 + a_1 a_2) \in \text{span}(a_1).
\]
Thus, \(a_2 \in \text{span}(a_1) \). The proof of the converse is similar.
Lemma 6

Proof

Since \(a \) obtain

Applying Lemma 3, we find

Corollary 5

diag

is the diagonal matrix

reflections, and

\(A \) is a product of two linearly independent vectors. Then

\[
\begin{pmatrix}
1 & a \\
-a & 1
\end{pmatrix}
\begin{pmatrix}
1 & b \\
-b & 1
\end{pmatrix}
= \begin{pmatrix}
1 - ab & a + b \\
-(a + b) & 1 - ab
\end{pmatrix}
\begin{pmatrix}
1 & -ab \\
-(a + b)(1 - ab)^{-1} & 1
\end{pmatrix}
\]

Suppose \(a \neq 0 \). If \(ab \notin \mathbb{R} \), then \(1 - ab = -\frac{a}{\|a\|^2}(a + \|a\|^2b) \) is a product of two linearly independent vectors in \(\mathbb{R}^n \). Thus, the Möbius transformation defined by the right most Vahlen matrix in the above equation lies in \(SO(n) \), and is not the identity transformation. Note, \((a + b)(1 - ab)^{-1} = T_a(b) \).

Lemma 4 Let \(a, b \in B \) and let \(c = T_a(b) \).

1. If \(ab \in \mathbb{R} \), then \(T_aT_b = T_c \)
2. If \(ab \notin \mathbb{R} \), then \(T_aT_b = T_c\phi \) for some \(\phi \in SO(n) \), \(\phi \neq I \).
3. \((T_a)^{-1} = T_a \)

The next result follows from Corollary 2 and Lemma 4.

Corollary 5 Let \(a \in B \), and \(\phi \in O(n) \). Then we have

1. \(\sigma(T_a) = T_{f^v(a)} \) and \((T_a)^* = T_{-f^v(a)} \)
2. \(\sigma(T_a) = T_a \) if and only if \(a \in v^\perp \).
3. \((T_a)^* = T_a \) if and only if \(a \in \text{span}(v) \).

The next lemma is an unexpected result.

Lemma 6 Let \(a_1, a_2 \in B \) satisfy \(a_1 \in \text{span}(v) \), \(a_2 \in v^\perp \), \(a_1 \neq 0 \), and \(a_2 \neq 0 \). If \(a = a_1 + a_2 \), then \(T_aT_a^* \neq (T_b)^2 \) for any \(b \in B \).

Proof Since \(f^v(a) = -a_1 + a_2 \) and \(K(a_1, a_2) = 0 \), we find

\[
a f^v(a) = (a_1 + a_2)(-a_1 + a_2)
= \|a_1\|^2 - \|a_2\|^2 + 2a_1a_2
\]

Applying Lemma 3, we find \(a_1a_2 \notin \mathbb{R} \) and \(1 + af^v(a) \notin \mathbb{R} \). Applying Lemma 4, we obtain \(T_aT_a^* = T_cA \) where \(c = T_a(-f^v(a)), A \in SO(n) \), and a Vahlen matrix for \(A \) is the diagonal matrix \(\text{diag}(1 + af^v(a), 1 + af^v(a)) \). However,

\[
1 + af^v(a) = a(-a\|a\|^{-2} + f^v(a))
\]

is a product of two linearly independent vectors. Then \(A \) is a product of two reflections, and \(A \neq I \). On the contrary, suppose \(T_aT_a^* = (T_b)^2 \) for some \(b \in B \).
Then $(T_b)^2 = T_d$ where $d = T_b(b)$. Applying Lemma 1, by uniqueness we find $c = d$ and $A = I$. However, this is a contradiction.

The following is another identity.

Lemma 7 Let $a \in B$, $a \neq 0$, and let $w \in \mathbb{R}^n$ be a unit vector. Then

$$\sigma_a f^w \sigma_a = \begin{cases} f^w & \text{if } w \in a^\perp \\ \sigma_b & \text{if } w \notin a^\perp \end{cases}, \quad b = \sigma_a f^w(a).$$

Proof A Möbius transformation maps each sphere and hyperplane onto either a sphere or hyperplane. Then $\sigma_a(w^\perp)$ is either a sphere or a hyperplane. The reflection $\tilde{\sigma}$ about $\sigma_a(w^\perp)$ fixes the points of $\sigma_a(w^\perp)$. Then $\tilde{\sigma} = \sigma_a f^w \sigma_a$.

Suppose $w \in a^\perp$. Recall, $a^\perp = a/\|a\|^2$ is the center of the sphere S_a. Notice, $\tilde{\sigma}(\infty) = \sigma_a f^w \sigma_a(\infty) = \sigma_a f^w(a^\perp) = \sigma_a(a^\perp) = \infty$. Then $\sigma_a(w^\perp)$ is a hyperplane. Notice, $\tilde{\sigma}(0) = \sigma_a f^w \sigma_a(0) = \sigma_a f^w(a) = \sigma_a(a) = 0$. Then $\sigma_a(w^\perp)$ is a hyperplane passing through the origin. If $x \in w^\perp$, then $K(\sigma_a(x), w) = K(a^\perp + r_a^2(x-a^\perp)^\perp, w) = 0$. Thus, $\sigma_a(w^\perp) \subset w^\perp$. Consequently, $f^w \sigma_a(x) = \sigma_a(x)$. Then $\tilde{\sigma}(x) = x$ for all $x \in w^\perp$. Since $\tilde{\sigma}$ is not the identity mapping, $\tilde{\sigma} = f^w$.

Suppose $w \notin a^\perp$. Notice, $\tilde{\sigma}(\infty) = \sigma_a f^w \sigma_a(\infty) = \sigma_a f^w(a^\perp) \neq \sigma_a(a^\perp) = \infty$ or $\tilde{\sigma}(\infty) \neq \infty$. Then $\sigma_a(w^\perp)$ is a sphere that is centered at $\tilde{\sigma}(\infty) = \sigma_a f^w(a^\perp)$. Now, let $\sigma_0(x) = x^\perp$ denote the inversion about the unit sphere $S^1 = S(0,1)$ centered at the origin with radius 1. The product of the Vahlen matrices for σ_o, σ_a, and f^w satisfies

$$\begin{pmatrix} 0 & (-1)^{n}e \\ e & 0 \end{pmatrix} \begin{pmatrix} a^\perp & 1 \\ 1 & -a^\perp \end{pmatrix} \begin{pmatrix} w & 0 \\ 0 & -w \end{pmatrix} = \begin{pmatrix} (-1)^n e v & (-1)^n e a^\perp v \\ e a^\perp v & -e v \end{pmatrix}.$$

Recall, $e x = (-1)^{n+1} x e$ for all $x \in \mathbb{R}^n$. Then the Vahlen matrix in the above right side is the same as the Vahlen matrix in the left side below

$$\begin{pmatrix} -ve & (-1)^{n}a^\perp ve \\ a^\perp ve & (-1)^n ve \end{pmatrix} = \begin{pmatrix} a^\perp & 1 \\ 1 & -a^\perp \end{pmatrix} \begin{pmatrix} w & 0 \\ 0 & -w \end{pmatrix} \begin{pmatrix} 0 & (-1)^n e \end{pmatrix}.$$

Thus, $\sigma_0 \sigma_a f^w = \sigma_a f^w \sigma_0$. If we evaluate at a, we find $\sigma_a f^w(a^\perp) = (\sigma_a f^w(a))^\perp$. Let $b = \sigma_a f^w(a) \in B$. Then $\tilde{\sigma}(\infty) = b^\perp$ and $\sigma_a(w^\perp)$ is a sphere centered at b^\perp. Notice,

$$\tilde{\sigma}(b) = \sigma_a f^w \sigma_a(\sigma_a f^w(a)) = \sigma_a(a) = 0.$$

Applying Theorem 3.4.2 in [1], the sphere $\sigma_a(w^\perp)$ is orthogonal to the unit sphere S^1. Hence, $\tilde{\sigma} = \sigma_b$.

Definition 1 Consider the following fixed points in $GM(B)$.

1. $GM(B)^o = \{ \psi \in GM(B) : \sigma(\psi) = \psi \}$
2. $GM(B)^s = \{ \psi \in GM(B) : \psi^s = \psi \}$
Let \(\phi \in O(n) \) and suppose \(f^v \phi f^v = \phi \). Then \(-f^v \phi(v) = \phi(v)\), and consequently \(\phi(v) \in \text{span}(v) \). Since \(\phi \in O(n) \), we find \(\phi(v) = v \) or \(\phi(v) = -v \). Conversely, if \(\phi(v) = v \) or \(\phi(v) = -v \), then \(f^v \phi f^v(v) = -f^v \phi(v) = \phi(v) \). If \(x \in v^\perp \) and since \(\phi(v) = v \) or \(\phi(v) = -v \), we find \(0 = K(x, v) = K(\phi(x), \phi(v)) \). Then \(\phi(x) \in v^\perp \) and \(f^v \phi f^v(x) = f^v \phi(x) = \phi(x) \). Thus, \(f^v \phi = \phi f^v \) iff \(f^v \phi f^v = \phi \) iff \(\phi(v) = v \) or \(\phi(v) = -v \). Note,

\[
\phi \phi^* = (f^v \phi f^v)^{-1} f^v = f^\phi(v) f^v.
\]

On the other hand, \(\phi^* = \phi \) iff \(f^v \phi^{-1} f^v = \phi \) iff \((\phi f^v)^{-1} = \phi f^v \).

Let \(a \in B \), and \(\xi \in O(n) \). Then \(T_a \xi \in GM(B)_\sigma \) iff \((T_a \xi)^* = T_a \xi \) iff \(\xi^* T_{-f^v(a)} = T_a \xi \). Thus, \(T_a \xi \in GM(B)_{\sigma^*} \) iff \(\xi^* f^v(a) = -a \) and \(\xi = \xi^* \). However, \(\xi^* f^v(a) = -a \) if and only if \(\xi f^v(a) = -a \).

Lemma 8 Let \(\phi \in O(n) \), and let \(a \in B \). Then

1. \(\sigma(\phi) = \phi \) iff \(\phi(v) \in \{v, -v\} \) iff \(\phi \phi^* = I \) iff \(f^v \phi = \phi f^v \).
2. \(\sigma(T_a \phi) = T_a \phi \) iff \(a \in v^\perp \) and \(\phi \phi^* = I \).
3. \(\phi^* = \phi \) iff \((\phi f^v)^2 = I \).
4. \((T_b \xi)^* = T_b \xi \) iff \(\xi f^v(b) = -b \) and \(\xi = \xi^* \).

Corollary 9 The following sets of fixed points satisfy

1. \(GM(B)^v = \{T_a \phi : a \in v^\perp, \phi \in O(n), \text{ and } \phi \phi^* = I\} \)
2. \(GM(B)_{\sigma^*} = \{T_b \xi : \xi f^v(b) = -b, \xi \in O(n), \text{ and } \xi^* = \xi\} \)

The next result follows easily from Corollary 5 and Corollary 9.

Corollary 10 Let \(a \in B \cap \text{span}(v) \). Then \(T_a \in GM(B)_{\sigma^*} \) and \(T_a T_a^* = T_a^2 \).

Lemma 11 Let \(\phi \in O(n) \). Then \(\phi \phi^* = \xi^2 \) for some \(\xi \in O(n) \cap GM(B)_{\sigma^*} \). We may choose \(\xi \) as follows.

1. If \(\phi \phi^* = I \), let \(\xi = -f^v \).
2. If \(\phi \phi^* \neq I \), let \(\xi = f^w f^v \) where \(w \) is a unit vector that bisects the smaller angle between \(v \) and \(\phi(v) \).

Proof Recall, \(\phi \phi^* = f^\phi(v) f^v \) from (6). If \(\phi \phi^* = I \), then a square root of \(I \) is \(-f^v \in GM(B)_{\sigma^*} \). Suppose \(\phi \phi^* \neq I \). Then \(\phi(v) \neq \pm v \). Notice, \(f^\phi(v) f^v \) is a rotation in the two-dimensional subspace spanned by \(v \) and \(\phi(v) \). Then there exists a unique unit vector \(w \) satisfying

1. \((f^w f^v)^2 = f^\phi(v) f^v \)
2. \(K(v, \phi(v)) = \cos(2\beta), 0 < 2\beta < \pi \)
3. \(K(v, w) = K(\phi(v), w) = \cos(\beta) \).

We say \(w \) bisects the smaller positive angle between the linearly independent vectors \(v \) and \(\phi(v) \). Let \(\xi = f^w f^v \). Clearly, \(\phi\phi^* = \xi^2 \), \((\xi f^v)^2 = I \), and \(\xi \in GM(B)_\sigma \) by Lemma 8.

Next, we note \(T_a(-f^v) \in GM(B)_\sigma \) because of Lemma 8. Let \(T_a\phi(T_a\phi)^* = (T_a\xi)^2 \) where \(\xi \) is from Lemma 11. Then

\[
T_a\phi\phi^* T_{-f^v(a)} = T_a\xi T_a \xi^{-1} \xi^2 \\
\phi\phi^* T_{-f^v(a)} = T_{\xi(a)} \xi^2 \\
\phi\phi^* T_{-f^v(a)} = \xi^2 T_{\xi^{-1}(a)}.
\]

If \(\phi\phi^* = I \), then choose \(\xi = -f^v \) by Lemma 11. Now, let \(\sqrt{I} \in O(n) \) be a square root of \(I \). Then \((\sqrt{I} f^v)(\sqrt{I} f^v)^* = I \) iff \((\sqrt{I} f^v)^2 = I \) iff \(\sqrt{I} f^v = f^v \sqrt{I} \).

Corollary 12 Let \(a \in B \), \(\phi \in O(n) \), and let \(\sqrt{I} \in O(n) \) be a square root of \(I \). Then

1. \(\phi\phi^* = I \) iff \(T_a\phi(T_a\phi)^* = T_a T_a^* \)
2. \(T_a T_a^* = (T_a(-f^v))^2 \) and \(T_a(-f^v) \in GM(B)_\sigma \)
3. If \(\sqrt{I} f^v = f^v \sqrt{I} \), then \((T_a\sqrt{I} f^v)(T_a\sqrt{I} f^v)^* = (T_a(-f^v))^2 \).

Given a Vahlen matrix \(A \), let \(F_A \in GM(\mathbb{R}^n) \) denote the corresponding linear fractional transformation defined on \(\mathbb{R}^n \). The next lemma follows from Lemma 4.

Lemma 13 Let \(a, b \in B \), \(\phi, \xi \in O(n) \), \(c = T_a(-\phi\phi^* f^v(a)) \), and let \(d = T_b(\xi(b)) \). Consider the Vahlen matrices

\[
a) \ A = \begin{pmatrix} 1 + a\phi\phi^* f^v(a) & 0 \\ 0 & 1 + a\phi\phi^* f^v(a) \end{pmatrix} \\
b) \ B = \begin{pmatrix} 1 - b\xi(b) & 0 \\ 0 & 1 - b\xi(b) \end{pmatrix}.
\]

Then each of \(F_A, F_B \in SO(n) \) is a product of two reflections, and satisfying

1. \((T_a\phi)(T_a\phi)^* = T_c F_A \phi \phi^* \)
2. \((T_b\xi)^2 = T_d F_B \xi^2 \).

Next, let \(a \in B \), \(a \neq 0 \), and let \(\phi \in O(n) \). Suppose \(f^{\alpha/\|a\|}(v) = -\phi(v) \) and \(\phi\phi^* \neq I \). Let \(w \) be the unit vector in Lemma 11 satisfying \(\xi = f^w f^v \in SO(n) \cap GM(B)_\sigma \), \(\xi^2 = f^{\phi(v)} f^v \), \(K(v, \phi(v)) = \cos(2\beta) \), \(0 < 2\beta < \pi \), and \(K(v, w) = K(\phi(v), w) = \cos(\beta) \). Note, \(f^{\alpha}(v) \) belongs to span of \(v \) and \(\phi(v) \). Since \(f^{\alpha}(v) = v - 2K(v, w)w \), we find \(K(f^{\alpha}(v), \phi(v)) = -1 \). Then \(f^{\alpha}(v) = -\phi(v) \). Since \(f^{\alpha/\|a\|}(v) = -\phi(v) \),
we obtain \(f^w(v) = f^a/\|a\|(v) \). Then \(a \in \text{span}(w) \) and \(\xi f^v(a) = -a \). Thus, \(T_a \xi \in \text{GM}(B)_\sigma \). Applying Lemma 13, we find \((T_a \phi)(T_a \phi)^* = (T_a \xi)^2 \).

On the other hand, suppose \(a \in \phi(v)^\perp \). Since \(\phi \phi^* f^v(a) = f^{\phi(v)}(a) = a \), then the Vahlen matrix \(A \) in Lemma 13 is a scalar matrix. Thus, \(F_A = I \). Also, \(T_a (\phi \phi^* f^v(a)) = T_a (a) = 0 \). Applying Lemma 13, we find \((T_a \phi)(T_a \phi)^* = \phi \phi^* \).

Theorem 14 Let \(a \in B, a \neq 0 \), and let \(\phi \in O(n) \). Let \(\xi \in \text{SO}(n) \cap \text{GM}(B)_\sigma \) be chosen as in Lemma 11.

1. If \(f^a/\|a\|(v) = -\phi(v) \) and \(\phi \phi^* \neq I \), then \(T_a \phi(T_a \phi)^* = (T_a \xi)^2 \) and \(T_a \xi \in \text{GM}(B)_\sigma \).

2. If \(a \in \phi(v)^\perp \), then \((T_a \phi(T_a \phi)^* = \phi \phi^* = \xi^2 \).

Lemma 15 Let \(x \in \text{GM}(B) \). If \(xx^* \) has a square root \(\sqrt{xx^*} \in \text{GM}(B)_\sigma \), then \(k = (\sqrt{xx^*})^{-1} x \in \text{GM}(B)_\sigma \). Consequently, \(x = \sqrt{xx^*} k \in \text{GM}(B)_\sigma \cdot \text{GM}(B)_\sigma \).

Proof By assumption, \(\sqrt{xx^*} \in \text{GM}(B)_\sigma \). Let \(k = (\sqrt{xx^*})^{-1} x \). Then

\[
k k^* = (\sqrt{xx^*})^{-1} x x^* (\sqrt{xx^*})^{-1} = e
\]

Since \(k = (k^*)^{-1} = \sigma(k^{-1})^{-1} = \sigma(k) \), we find \(k \in \text{GM}(B)_\sigma \).

\(\square \)
2 A matrix group for $GM(B)$

Let $M_n(\mathbb{R})$ denote the set of n-by-n real matrices. For $A \in M_n(\mathbb{R})$, let A^t and $\det(A)$ denote the transpose and determinant of matrix A, respectively. Let $GL_{n+1}(\mathbb{R})$ be the set of nonsingular matrices in $M_{n+1}(\mathbb{R})$. Let $J = 1 \oplus (-I_n) \in GL_{n+1}(\mathbb{R})$ be a block matrix. We review a model for hyperbolic geometry [1], [8]. If $x = (x_0, x_1, \ldots, x_n) \in \mathbb{R}^{n+1}$ is a row vector, then

$$x^t J x = x_0^2 - \sum_{i=1}^{n} x_i^2.$$

Let $Q = \{ x \in \mathbb{R}^{n+1} : x_0 \geq 1, x^t J x = 1 \}$. We know Q is the upper half of a two-sheeted hyperboloid, and we simply say Q is a hyperboloid. For $x \in Q$, let $T_x Q$ be the tangent space to Q at x. Notice, if $y \in \mathbb{R}^{n+1}$, then $y \in T_x Q$ if and only if $y^t J x = 0$. For $y, z \in T_x Q$, let $\langle y, z \rangle_x = -y^t J z$. It is known that $\langle \cdot, \cdot \rangle_x$ defines a positive-definite bilinear form on $T_x Q$ [8]. The n-dimensional Riemannian manifold Q is the hyperboloid model for hyperbolic geometry.

If $A \in GL_{n+1}(\mathbb{R})$, let a_{00} denote the entry of A that lies in the first row and first column. It is well-known that the group of isometries of Q is the Lie group

$$O^+(1, n) = \{ A \in GL_{n+1}(\mathbb{R}) : a_{00} \geq 1, A^t J A = J \}. \quad (7)$$

In fact, $Ax \in Q$ whenever $x \in Q$ and $A \in O^+(1, n)$. Recall, $B \subset \mathbb{R}^n$ denotes the open unit ball. Let $F_o : Q \to B$ be a bijection from Q onto B such that $F_o(x_0, x_1, \ldots, x_n) = (1+x_0)^{-1}(x_1, \ldots, x_n)$. It is well-known that $F_o A F_o^{-1} \in GM(B)$ whenever $A \in O^+(1, n)$ [1, page 51]. In addition, the mapping

$$F : O^+(1, n) \to GM(B) \quad (8)$$

satisfying $F(A) = F_o A F_o^{-1}$, $A \in O^+(1, n)$, is a group isomorphism from $O^+(1, n)$ onto $GM(B)$. We say $O^+(1, n)$ is a matrix group interpretation for $GM(B)$. The connected component of $O^+(1, n)$ that contains the identity I_{n+1} (see [1], [7]) is the subgroup

$$SO^+(1, n) = \{ A \in O(1, n) : a_{00} > 0, \det(A) = 1 \}.$$

The Lie algebra of $SO^+(1, n)$ or $O^+(1, n)$ is

$$\mathfrak{s}_0(1, n) = \{ A \in M_{n+1}(\mathbb{R}) : A^T J + J A = 0 \}. \quad \text{(9)}$$

The Lie algebra of the real orthogonal group $O(n)$ is

$$\mathfrak{s}_0(n) = \{ W \in M_n(\mathbb{R}) : W^T = -W \}.$$

Let $\text{der}(\mathfrak{s}_0(1, n))$ denote the set of derivations of $\mathfrak{s}_0(1, n)$. Let $\text{Int}(\mathfrak{s}_0(1, n))$ be the adjoint group of $\mathfrak{s}_0(1, n)$. The next lemma has some useful facts about $\mathfrak{s}_0(1, n)$.

Lemma 16 Let $n \geq 2$, and let $A \in M_{n+1}(\mathbb{R})$.

8
a) $A \in \mathfrak{so}(1,n)$ iff $A = \begin{pmatrix} 0 & w^T \\ w & A_2 \end{pmatrix}$ where $w \in \mathbb{R}^n$ and $A_2 \in \mathfrak{so}(n)$.

b) $\mathfrak{so}(1,n)$ is a real simple Lie algebra.

c) The center of $SO^+(1,n)$ is $\{I_{n+1}\}$.

d) The adjoint representation

$$Ad : SO^+(1,n) \rightarrow Int(\mathfrak{so}(1,n))$$

is an isomorphism, and $ad(\mathfrak{so}(1,n)) = \text{der}(\mathfrak{so}(1,n))$.

e) The exponential mapping $\exp : \mathfrak{so}(1,n) \rightarrow SO^+(1,n)$ is surjective.

f) The Killing form K for $\mathfrak{so}(1,n)$ satisfies

$$K(A,B) = (n-1)\text{Tr}(AB)$$

for all $A, B \in \mathfrak{so}(1,n)$.

Proof Part a) follows from a direct computation. For part b), $\mathfrak{so}(1,n)$ is in the list of simple Lie algebras in [3, page 518, Table V]. Part c) follows from an application of Lemma 1. Since $SO^+(1,n)$ is a connected simple Lie group with trivial center, part d) is a special case of [3, page 129 and 132]. Part e) is proved in [7].

To prove part f), consider the complex orthogonal group $O(n+1, \mathbb{C})$. Let $\mathfrak{o}(n+1)$ be the Lie algebra of $O(n+1, \mathbb{C})$. The Killing form for $\mathfrak{o}(n+1)$ satisfies $K(X,Y) = (n-1)\text{Tr}(XY)$, $X,Y \in \mathfrak{o}(n+1)$ [10, page 390]. It is known that the complexification of $\mathfrak{so}(1,n)$ is $\mathfrak{o}(n+1)$. Then the Killing form for $\mathfrak{so}(1,n)$ is the restriction of the Killing form for $\mathfrak{o}(1+n)$ to $\mathfrak{so}(1,n)$ [3, page 180].

From (4), we recall the involution σ of the group $GM(B)$. From the isomorphism F in (8), we determine the corresponding involution of $O^+(1,n)$. If $\phi \in O(n)$, then $1 \oplus \phi \in O^+(1,n)$. We apply the identity $F(1 \oplus \phi) = \phi, \phi \in O(n)$ [1, page 51]. Let

$$L = 1 \oplus f^v \in O^+(1,n).$$

Now, consider the involution

$$\rho : O^+(1,n) \rightarrow O^+(1,n)$$

satisfying $\rho(A) = LAL$ for $A \in O^+(1,n)$. Note, if $n \geq 2$, and $v = e_1$, then $L = \text{diag}(1,-1,I_{n-1})$. Let $\hat{A} = \rho(A)^{-1}$.

Definition 2 Consider the following subsets of $O^+(1,n)$.

1. $O^+(1,n)^\rho = \{\psi \in O^+(1,n) : \rho(\psi) = \psi\}$
2. $O^+(1,n)_{\rho} = \{\psi \in O^+(1,n) : \hat{\psi} = \psi\}$
3. \(P = \{ \psi \hat{\psi} : \psi \in O^+(1, n) \} \)

Lemma 17 We have the following identities.

1. \(O^+(1, n)_\rho = F^{-1}(GM(B)^\sigma) \)
2. \(O^+(1, n)_\rho = F^{-1}(GM(B)_\sigma) \)
3. \(P = F^{-1}\{ \phi \hat{\phi} : \phi \in GM(B) \} \)

Proof Let \(\phi \in GM(B) \). Note, \(\phi \in GM(B) \) if and only if \(f^v \phi f^v = \phi \). Applying \(F^{-1} \), we find \(\phi \in GM(B) \) if and only if \(LF^{-1}(\phi)L = F^{-1}(\phi) \). Thus, \(\phi \in GM(B)^\sigma \) if and only if \(\rho(F^{-1}(\phi)) = F^{-1}(\phi) \). This proves Statement 1. Note, \(\hat{F}^{-1}(\phi) = F^{-1}(\phi^*) \). Then Statements 2 and 3 of the lemma follow.

The differential of \(\rho \) is a Lie algebra involution

\[d\rho : so(1, n) \to so(1, n) \]

satisfying \(d\rho(A) = LAL, A \in so(1, n) \). Then \(so(1, n) = \mathfrak{K} \oplus \mathfrak{p} \) is a direct sum of eigenspaces

\[\mathfrak{p} = \{ A \in so(1, n) : d\rho(A) = -A \} \quad (11) \]
\[\mathfrak{K} = \{ A \in so(1, n) : d\rho(A) = A \} \quad (12) \]

Notice, \(\mathfrak{K} \) is a Lie subalgebra of \(so(1, n) \). Let

\[K = \{ A \in O^+(1, n) : \rho(A) = A \}. \quad (13) \]

Applying Lemma 8, we find \(A \in K \) if and only if \(A \hat{A} = I \). Let \(X \in so(1, n) \) satisfy \(e^{tX} \in K \) for all \(t \in \mathbb{R} \). Then \(\rho(e^{tX}) = e^{tX} \) for all \(t \in \mathbb{R} \). Equivalently, \(e^{t\rho(X)} = e^{tX} \) for all \(t \in \mathbb{R} \). Since the exponential map is injective in a small neighborhood of 0, \(d\rho(X) = X \). Then the Lie algebra of \(K \) is \(\mathfrak{K} \).

Recall, \(\mathcal{K} \) is the Killing form for \(so(1, n) \). Let

\[\mathcal{K}_\rho(V, W) = -\mathcal{K}(V, d\rho(W)). \quad (14) \]

for \(V, W \in so(1, n) \).

Lemma 18 Let \(U, V \in so(1, n) \).

1. If \(A \in \mathfrak{p} \), then \(\mathcal{K}_\rho(\text{ad}(A)U, V) = \mathcal{K}_\rho(U, \text{ad}(A)V) \).
2. If \(A \in \mathcal{K} \), then \(\mathcal{K}_\rho(\text{ad}(A)U, V) = -\mathcal{K}_\rho(U, \text{ad}(A)V) \).
3. If \(X \in O^+(1, n) \), then \(\mathcal{K}_\rho(\text{Ad}(X)U, V) = \mathcal{K}_\rho(U, \text{Ad}(\hat{X})(V)) \).
4. \(\mathcal{K}_\rho(d\rho(U), d\rho(V)) = \mathcal{K}_\rho(U, V) \) and \(\mathcal{K}_\rho(U, V) = \mathcal{K}_\rho(U, V) \)
Proof For any $A \in \mathfrak{so}(1, n)$, we have a well-known identity, $\mathcal{K}([A, V], W) = \mathcal{K}(A, [V, W])$. For any Lie algebra automorphism $s \in Aut(\mathfrak{so}(1, n))$, we recall a well-known identity, $s \circ ad(V) \circ s^{-1} = ad(s(V))$. Then Statements 1 and 2 follow from these two identities. Let $X \in O^+(1, n)$. Applying the identity $\mathcal{K}(s(U), s(V)) = \mathcal{K}(U, V)$, we find

$$\mathcal{K}_\rho(\text{Ad}(X)V, W) = -\mathcal{K}(\text{Ad}(LX^{-1})V, \text{Ad}(L)W)$$

$$= -\mathcal{K}(V, \text{Ad}(LX)W)$$

$$= \mathcal{K}_\rho(V, \text{Ad}(X)(W)).$$

This proves statement 3. Finally, Statement 4 follows easily since $d\rho \in Aut(\mathfrak{so}(1, n))$.

Lemma 19 Let $n \geq 2$, and let $A \in \mathfrak{so}(1, n)$.

1. If $\mathcal{K}_\rho(ad(A)U, V) = \mathcal{K}_\rho(U, ad(A)V)$ for all $U, V \in \mathfrak{so}(1, n)$, then $A \in \mathfrak{p}$.

2. If $\mathcal{K}_\rho(ad(A)U, V) = -\mathcal{K}_\rho(U, ad(A)V)$ for all $U, V \in \mathfrak{so}(1, n)$, then $A \in \mathfrak{r}$.

Proof Suppose $\mathcal{K}_\rho(ad(A)U, V) = \mathcal{K}_\rho(U, ad(A)V)$ for all $U, V \in \mathfrak{so}(1, n)$. Then

$$\mathcal{K}_\rho(e^{ad(A)}U, V) = \mathcal{K}_\rho(U, e^{ad(A)}V).$$

Note, $e^{ad(A)} = Ad(e^A)$. Let $\alpha \in \mathbb{R}$. Applying Lemma 18, we find

$$\mathcal{K}_\rho(U, e^{ad(A)}V) = \mathcal{K}_\rho(U, Ad(e^A)V)$$

$$= \mathcal{K}_\rho(\text{Ad}(e^A)U, V)$$

$$= \mathcal{K}_\rho(e^{-ad(\rho(A))}U, V).$$

Since \mathcal{K}_ρ is a non-degenerate bilinear form, and the exponential mapping is injective on a small neighborhood of 0, we obtain $ad(A) = -ad(d\rho(A))$. Recall, the center of $\mathfrak{so}(1, n)$ is $\{0\}$ for $n \geq 2$ by Corollary 16. Then $d\rho(A) = -A$ and $A \in \mathfrak{p}$.

Next, suppose $\mathcal{K}_\rho(ad(A)U, V) = -\mathcal{K}_\rho(U, ad(A)V)$ for all $U, V \in \mathfrak{so}(1, n)$. Then $\mathcal{K}_\rho(e^{ad(A)}U, V) = \mathcal{K}_\rho(U, e^{-ad(A)}V)$ for all $\alpha \in \mathbb{R}$. Similarly, we find $A = d\rho(A)$ and $A \in \mathfrak{r}$.

Next, we determine the forms of the matrices in \mathfrak{p} and \mathfrak{r}. Let $A = \begin{pmatrix} 0 & w^t \\ w & A_2 \end{pmatrix} \in \mathfrak{so}(1, n)$. Then

1. $LA = (1 \oplus f^v)A = \begin{pmatrix} 0 & w^t \\ f^w & f^v A_2 \end{pmatrix}$

2. $AL = A(1 \oplus f^v) = \begin{pmatrix} 0 & w^t f^v \\ w & A_2 f^v \end{pmatrix}$
Clearly, $d\rho(A) = -A$ if and only if $LA = -AL$ if and only if $f^v w = -w$ and $A_2 f^v = -f^v A_2$. Likewise, $d\rho(A) = A$ if and only if $LA = AL$ if and only if $f^v w = w$ and $A_2 f^v = f^v A_2$.

Lemma 20 Let $A = \begin{pmatrix} 0 & w^t \\ w & A_2 \end{pmatrix} \in so(1,n)$ where $w \in \mathbb{R}^n$ and $A_2 \in so(n)$.

1. $A \in \mathfrak{p}$ if and only if $A = \begin{pmatrix} 0 & w^t \\ w & A_2 \end{pmatrix}$ where $w \in \text{span}(v)$, $A_2 v \in v^\perp$, and $A_2 (v^\perp) \subset \text{span}(v)$.

2. $A \in \mathfrak{r}$ if and only if $A = \begin{pmatrix} 0 & w^t \\ w & A_2 \end{pmatrix}$ where $w \in v^\perp$, $A_2 v \in \text{span}(v)$, and $A_2 (v^\perp) \subseteq v^\perp$.

Lemma 21 Let $n \geq 2$, and let $X \in so(1,n)$. If $K_\rho(Ad(e^X) A, B) = K_\rho(A, Ad(e^X) B)$ for all $A, B \in so(1,n)$, then $\rho(e^X) = e^{-X}$.

Proof Note, $K_\rho(Ad(e^X) A, B) = K_\rho(A, Ad(e^X) B)$ by (18). Then $K_\rho(A, Ad(e^X) B) = K_\rho(A, Ad(e^X) B)$ for all $A, B \in so(1,n)$ since K_ρ is non-degenerate, $Ad(e^X) = Ad(e^X)$. Recall, the adjoint representation for $SO^+(1,n)$ is injective for $n \geq 2$. Then $e^X = e^X$ or $\rho(e^X) = e^{-X}$.

Let

$$p_0 = \{ A \in so(1,n) : \rho(e^A) = e^{-A} \}.$$ (15)

Clearly, $p \subseteq p_0$.

3 The case when $v = e_1$}

The next lemma shows the bilinear form K_ρ is not positive-definite.

Lemma 22 Let $a \in \mathbb{R}$, $b_1, b_2 \in \mathbb{R}^{n-1}$, and let $C \in so(n-1)$. Let c_{ij} denote the (i,j)-entry of C, $1 \leq i, j, \leq n - 1$. Let $A \in so(1,n)$ be given by

$$A = \begin{pmatrix} a \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & b_1^T b_2 \\ b_1^T & b_2^T & C \end{pmatrix}.$$

Then

$$K_\rho(A, A) = 2(n-1) a^2 b_1 b_2 - b_1^2 b_2^2 + (n-1) \sum c_{ij}^2$$

where the sum is taken over all $1 \leq i, j, \leq n - 1$.

12
Proof Notice,
\[
d\rho(A) = \begin{pmatrix} -a & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ b_1 & b_2 \end{pmatrix} \begin{pmatrix} b_1^T \\ -b_2^T \\ C \end{pmatrix}.
\]

Then
\[
Ad\rho(A) = \begin{pmatrix} -a^2 & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} b_1^T \\ b_2^T \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \\ b_1 & b_2 \end{pmatrix} \begin{pmatrix} b_1^T \\ -b_2^T \end{pmatrix} + C^2
\]

where \(*_1\) and \(*_2\) are other entries. The trace satisfies
\[
Tr(Ad\rho(A)) = -2\left(a^2 - b_1^T b_1 - b_2^T b_2\right) + Tr(C^2)
\]
\[
= -2\left(a^2 - b_1^T b_1 - b_2^T b_2\right) - \sum_{i,j=1}^{n-1} c_{ij}^2.
\]

Applying Lemma 16, part f), we find
\[
K_{\rho}(A,A) = -K_{\rho}(A,d\rho(A)) = -(n-1)Tr(Ad\rho(A)).
\]

Applying Lemma 20 to the case when \(v = e_1\), we find \(p\) consists of real matrices of the form
\[
A = \begin{pmatrix} 0 & a_1 & 0 & \cdots & 0 \\ a_1 & 0 & b_2 & \cdots & b_n \\ 0 & -b_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -b_n & 0 & \cdots & 0 \end{pmatrix} \in p.
\]

Likewise, if \(v = e_1\), \(K\) consists of real matrices of the form
\[
\begin{pmatrix} 0 & a_2 & \cdots & a_n \\ 0 & 0 & \cdots & 0 \\ a_2 & 0 & c_{11} & \cdots & c_{1,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & c_{n-1,1} & \cdots & c_{n-1,n-1} \end{pmatrix} \in K
\]

where \((c_{ij}) \in \mathfrak{o}(n-1)\).

Lemma 23 \(p = p_0\ if and only if n = 2\).

Proof From (15), we know \(p \subseteq p_0\). Let \(n = 2\), and let
\[
X = \begin{pmatrix} 0 & x_1 & x_3 \\ x_1 & 0 & x_2 \\ x_3 & -x_2 & 0 \end{pmatrix} \in \mathfrak{o}(1,2).
\]
Then
\[
X^2 = \begin{pmatrix}
 x_1^2 + x_3^2 & -x_2x_3 & x_1x_2 \\
 x_2x_3 & x_1^2 - x_2^2 & x_1x_3 \\
 -x_1x_2 & x_1x_3 & -x_2^2 + x_3^2
\end{pmatrix},
\]

We introduce the following real numbers that depend on \(X\).

1. \(\alpha_X = x_1^2 - x_2^2 + x_3^2\)
2. \(s_X = \sum_{k=0}^{\infty} \frac{(\alpha_X)^k}{(2k+1)!}\)
3. \(c_X = \sum_{k=1}^{\infty} \frac{(\alpha_X)^{k-1}}{(2k)!}\)

For each integer \(k \geq 1\), we find

1. \(X^{2k} = (\alpha_X)^{k-1}X^2\)
2. \(X^{2k+1} = (\alpha_X)^kX\).

Then we find
\[
e^X = I + s_XX + c_XX^2.
\] (17)

If \(\alpha_X = 0\), then identity (17) reduces to \(e^X = I + X + \frac{1}{2}X^2\). Note, because of the eigenvalues of \(d\rho\), we have
\[
d\rho(X) = \begin{pmatrix}
 0 & -x_1 & x_3 \\
 -x_1 & 0 & -x_2 \\
 x_3 & x_2 & 0
\end{pmatrix}.
\]

Suppose \(X \in p_0\). It suffices to show \(x_3 = 0\). For if \(x_3 = 0\), then \(X \in p\) and \(p_0 \subseteq p\).

By definition, \(e^{d\rho(X)} = e^{-X}\). Notice, \(\alpha_X = \alpha_{d\rho(X)} = \alpha_{-X}\), \(s_X \neq 0\), and \(c_X \neq 0\).

Since the (1, 2)-entries of \(e^{d\rho(X)}\) and \(e^{-X}\) are equal, we find
\[
1 - x_1s_X + x_2x_3c_X = 1 - x_1s_X - x_2x_3c_X.
\]

If \(x_3 \neq 0\), then \(x_2 = 0\). Likewise, since the (2, 3)-entries of \(e^{d\rho(X)}\) and \(e^{-X}\) are equal, we find
\[
1 - x_2s_X - x_1x_3c_X = 1 - x_2s_X + x_1x_3c_X.
\]

If \(x_3 \neq 0\), then \(x_1 = 0\). Thus, if \(x_3 \neq 0\), then \(X \in \mathbb{R}\). Then \(e^X = e^{d\rho(X)} = e^{-X}\).

Applying (17), we find
\[
\begin{pmatrix}
 1 + c_Xx_3^2 & 0 & s_Xx_3 \\
 0 & 0 & 0 \\
 s_Xx_3 & 0 & 1 + c_Xx_3^2
\end{pmatrix} = e^X = e^{-X} = \begin{pmatrix}
 1 + c_Xx_3^2 & 0 & -s_Xx_3 \\
 0 & 0 & 0 \\
 -s_Xx_3 & 0 & 1 + c_Xx_3^2
\end{pmatrix}
\]

The above identity implies \(x_3 = 0\) if we assume \(x_3 \neq 0\). A contradiction, thus, \(x_3 = 0\). If \(n = 2\), this proves \(p_0 = p\).
Conversely, let \(n \geq 3 \). Let \(X_\pi = 0 \oplus \left(\begin{array}{cc} 0 & \pi \\ -\pi & 0 \end{array} \right) \) be a block matrix. Then \(X_\pi \in \mathfrak{h}, X_\pi \notin \mathfrak{p} \), and \(e^{X_\pi} = I_{n-1} \oplus (-I_2) \). Consequently, \(X_\pi \in p_0 \). Hence, \(p \neq p_0 \). This completes the proof.

Corollary 24 Let \(f : \mathfrak{p} \times K \to O^+(1,2) \) be defined by \(f(A,k) = e^{A}k, A \in \mathfrak{p}, k \in K \). Then \(f \) is surjective.

Proof Let \(W \in O^+(1,2) \). Then \(\widehat{WW} \in SO^+(1,2) \). Since the exponential mapping for \(SO^+(1,2) \) is surjective by Lemma 16, there exists \(X \in \mathfrak{so}(1,2) \) such that \(\widehat{WW} = e^X \). Then \(\widehat{X} = e^X \). Applying Lemma 23, we find \(X \in p_0 = p \). Since \(p \) is a subspace, \(-X/2 \in p \) and \(e^{-X/2} = e^{-X/2} \).

Let \(W = e^{X/2}Y \) for some \(Y \in O^+(1,n) \). Then

\[
Y \widehat{Y} = e^{-X/2}W \widehat{W}e^{-X/2} = e^{-X/2}e^Xe^{-X/2} = I.
\]

Thus, \(Y \in K \). Hence, \(f \) is surjective.

Theorem 25 Let \(A \in \mathfrak{p} \) be given as in (16). Let \(\alpha = a_1^2 - \sum_{k=2}^{n} b_k^2 \). Then

a) \(e^A = I_{n+1} + A \left(\frac{\sinh(\sqrt{\alpha})}{\sqrt{\alpha}} \right) + A^2 \left(\frac{\cosh(\sqrt{\alpha})-1}{\alpha} \right), \) if \(\alpha \neq 0 \)

b) \(e^A = I_{n+1} + A + \frac{1}{2} A^2, \) if \(\alpha = 0 \).

c) For all \(\alpha \in \mathbb{R} \), the trace satisfies

\[
\text{Tr}(e^A) = (n+1) + 2(\cosh(\sqrt{\alpha}) - 1).
\]

Proof We find

\[
A^2 = \begin{pmatrix}
0 & a_1^2 & a_1 b_2 & \cdots & a_1 b_n \\
-\sum_{k=2}^{n} b_k^2 & 0 & a_1 b_2 & \cdots & 0 \\
0 & -b_2^2 & 0 & \cdots & -b_2 b_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -b_2 b_n & \cdots & -b_2^2 & 0
\end{pmatrix}.
\]

For each integer \(k \geq 1 \), we find

1. \(A^{2k} = \alpha^{k-1} A^2 \)

2. \(A^{2k+1} = \alpha^k A \).

Following the proof Lemma 23, statements a) and b) can be proved similarly. Then statement c) follows from a) and b).

\[\square\]
Corollary 26 The restriction of the exponential mapping to \(p \) is not injective.

Proof In Theorem 25, choose \(A \in p \) such that \(\alpha = -\pi^2 \). Then \(\sinh(\sqrt{\alpha}) = \sinh(i\pi) = 0 \) and \(\cosh(\sqrt{\alpha}) = \cosh(i\pi) = -1 \). By Theorem 25 and identity (18), for any such \(A \), we find \(e^A = I + \frac{2}{\pi^2} A^2 = e^{-A} \). Thus, the lemma is proved. \(\square \)

Let \(M_n(Q) \) denote the set of \(n \)-by-\(n \) matrices with rational entries.

Lemma 27 The restriction of the exponential mapping to \(p \cap M_{1+n}(Q) \) is injective.

Proof For \(i \in \{1, 2\} \), let

\[
A_i = \begin{pmatrix}
0 & a^i_1 & 0 & \cdots & 0 \\
a^i_1 & 0 & b^i_2 & \cdots & b^i_n \\
0 & -b^i_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -b^i_n & 0 & \cdots & 0
\end{pmatrix} \in p \cap M_{1+n}(Q)
\]

and let \(\alpha_i = (a^i_1)^2 - \sum_{k=2}^n (b^i_k)^2 \neq 0 \). Suppose \(e^{A_1} = e^{A_2} \). We divide the proof into cases.

Applying Theorem 25, we have

\[
e^{A_i} = I_{n+1} + A^2_i \left(\frac{\cosh(\sqrt{\alpha_i}) - 1}{\alpha_i} \right) + A_i \left(\frac{\sinh(\sqrt{\alpha_i})}{\sqrt{\alpha_i}} \right)
\]

where \(\alpha_i = (a^i_1)^2 - \sum_{k=2}^n (b^i_k)^2 \neq 0 \).

Case 1: Suppose \(\alpha_1 = 0 \) and \(\alpha_2 = 0 \). Applying Theorem 25 and since \(e^{A_1} = e^{A_2} \), we find \(\frac{1}{2} A^2_1 + A_1 = \frac{1}{2} A^2_2 + A_2 \). Since the location of the zero entries of \(A_i \) and \(A^2_i \) do not coincide, we have \(A_1 = A_2 \).

Case 2: Suppose \(\alpha_1 > 0 \) and \(\alpha_2 = 0 \). Note, \(Tr(e^{A_1}) = Tr(e^{A_2}) \). Applying part c) of Theorem 25, we find \(1 < \cosh(\sqrt{\alpha_1}) = \cosh(\sqrt{\alpha_2}) = 1 \). A contradiction.

Case 3: Suppose \(\alpha_1 = 0 \) and \(\alpha_2 < 0 \). Applying part c) of Theorem 25, we find

\[1 = \cos \sqrt{-\alpha_2} = \cos \sqrt{-\alpha_2} \leq 1.\]

Then \(\cos \sqrt{-\alpha_2} = 1 \), and consequently, \(\alpha_2 = -4\pi^2 n^2 \) for some integer \(n \). This is a contradiction since \(A_2 \) has only rational entries.

Case 4: Suppose \(\alpha_1, \alpha_2 > 0 \). Applying part c) of Theorem 25, we find \(\cosh(\sqrt{\alpha_1}) = \cosh(\sqrt{\alpha_2}) > 1 \). Since \(\cosh(x) \) is injective on \((0, \infty) \), we obtain \(\alpha_1 = \alpha_2 \). In identity (18), we notice that the locations of the zero entries of \(A_i \) are the locations of the nonzero entries of \(A^2_i \). Since \(\sinh(\sqrt{\alpha_1}) = \sinh(\sqrt{\alpha_2}) > 0 \) and \(e^{A_1} = e^{A_2} \), we find

\[A_1 \left(\frac{\sinh(\sqrt{\alpha_1})}{\sqrt{\alpha_1}} \right) = A_2 \left(\frac{\sinh(\sqrt{\alpha_2})}{\sqrt{\alpha_2}} \right).\]
Thus, $A_1 = A_2$.

Case 5: Suppose $\alpha_1, \alpha_2 < 0$. Applying part c) of Theorem 25, we find

$$\cos \sqrt{-\alpha_1} = \cosh \sqrt{\alpha_1} = \cosh \sqrt{\alpha_2} = \cos \sqrt{-\alpha_2}.$$

Notice, $\sqrt{-\alpha_1} \neq n\pi$ for any integer n since $\alpha_1 \in \mathbb{Q}$ and $\alpha_1 < 0$. Then $\cos \sqrt{-\alpha_1} \neq \pm 1$ and $\sin \sqrt{-\alpha_1} \neq 0$. Similarly, $\sin \sqrt{-\alpha_2} \neq 0$. Recall, the locations of the zero entries of A_1 are the locations of the nonzero entries of A_1^2. Since $e^{A_1} = e^{A_2}$, and by applying Theorem 25, we obtain

$$A_1 \sin \sqrt{-\alpha_1} = A_2 \sin \sqrt{-\alpha_2}$$

Then $A_1 = A_2$.

Case 6: Suppose $\alpha_1 > 0$ and $\alpha_2 < 0$. Applying part c) of Theorem 25, we find

$$1 < \cosh(\sqrt{-\alpha_1}) = \cos(\sqrt{-\alpha_2}) \leq 1.$$

A contradiction. Hence, the proof of the theorem is complete.

\[\square \]

Lemma 28 Let $n \geq 2$. Let $A_1, A_2 \in \mathfrak{p} \cap M_{1+n}(\mathbb{Q})$, and let $k_1, k_2 \in K$. Then $e^{A_1} k_1 = e^{A_2} k_2$ if and only if $A_1 = A_2$ and $k_1 = k_2$.

Proof If $e^{A_1} k_1 = e^{A_2} k_2$, then $e^{-A_2} e^{A_1} = k_2 k_1^{-1}$. Recall, $Ad(k)$ is K_ρ-orthogonal for all $k \in K$ by (??), and $Ad(e^A)$ is K_ρ-symmetric for all $A \in \mathfrak{p}$. For all $v, w \in \sigma(1, n)$, we obtain

$$K_\rho(Ad(e^{-A_2} e^{A_1}) v, w) = K_\rho(Ad(k_2 k_1^{-1}) v, w)$$

$$= K_\rho(v, Ad(k_2 k_1^{-1})^{-1} w)$$

$$= K_\rho(v, Ad(e^{-A_2} e^{A_1})^{-1} w)$$

$$= K_\rho(v, Ad(e^{-A_1}) Ad(e^{A_2}) w)$$

$$= K_\rho(Ad(e^{-A_1}) v, Ad(e^{A_2}) w)$$

$$= K_\rho(Ad(e^{A_2} e^{-A_1}) v, w)$$

Since K_ρ is a non-degenerate bilinear form, $Ad(e^{-A_2} e^{A_1}) = Ad(e^{A_2} e^{-A_1})$. Note, the kernel of the restriction of the adjoint representation Ad to $SO^+(1, n)$ is $\{I\}$, which is the center of $SO^+(1, n)$ for $n \geq 2$. Then $e^{-A_2} e^{A_1} = e^{A_2} e^{-A_1}$ or $e^{2A_2} = e^{2A_1}$. Then $A_1 = A_2$ by Lemma 27. Consequently, $k_1 = k_2$. This proves the necessary direction of the theorem.

\[\square \]
4 Example: $\mathfrak{o}(1, 3)$

Let $n = 3$. Let $L = \text{diag}(1, -1, 1, 1)$ be a diagonal matrix. If $K_\rho(e^{ad(X)} A, B) = K_\rho(A, e^{ad(X)} B)$ for all $A, B \in \mathfrak{o}(1, 3)$ it does not follow that $X \in \mathfrak{p}$. For instance, if $d_3^2 + d_4^2 - f^2 = -(k\pi)^2$ for any integer k, and

$$X = \begin{pmatrix} 0 & 0 & d_3 & d_4 \\ 0 & 0 & 0 & 0 \\ d_3 & 0 & 0 & f \\ d_4 & 0 & -f & 0 \end{pmatrix} \in \mathfrak{r}$$

we find $Tr(e^X A e^{-X} LBL) = Tr(e^X B e^{-X} LAL)$ for all $A, B \in \mathfrak{o}(1, 3)$ by applying Mathematica. Moreover, if k is an even integer, then $e^X = I$. In particular, if

$$X = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \pi \\ 0 & 0 & -\pi & 0 \end{pmatrix} \in \mathfrak{r}$$

then

$$\widetilde{e}^X = e^X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

but

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \widetilde{e}^{X/2} \neq e^{X/2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

5 Polar decomposition

We review the polar decomposition for $O^+(1, n)$. Let $a_0 \geq 1$, $b, c \in \mathbb{R}^n$, and let $A_0 \in M_n(\mathbb{R})$. Let

$$A = \begin{pmatrix} a_0 & b^T \\ c & A_0 \end{pmatrix}. \quad (19)$$

We know $A \in O^+(1, n)$ if and only if $A^T J A = J$. The identity $A^T J A = J$ is equivalent to

$$\begin{pmatrix} a_0^2 - c^T c & a_0 b^T - c^T A_0 \\ a_0 b - A_0^T c & b b^T - A_0^T A_0 \end{pmatrix} = J. \quad (20)$$

From (20), we notice that $c \neq 0$ if and only if $a > 1$. We verify directly that

$$A^{-1} = J A^T J = \begin{pmatrix} a_0 & -c^T \\ -b & A_0^T \end{pmatrix}. \quad (21)$$
Since \(J \in O^+(1, n) \), clearly \(A^T \in O^+(1, n) \). Consider the symmetric matrix

\[
S = \begin{pmatrix} a_0 & c^T \\ c & I_n + \frac{cc^T}{1+a_0} \end{pmatrix}.
\] (21)

If \(c = 0 \), then \(S = I_{n+1} \). If \(c \neq 0 \), we show \(S \) is positive-definite also. Clearly, if \(w \in c^+ \), we find \(Sw = w \). Consider the vectors

1. \(v = \frac{1}{\sqrt{2}} (1, \frac{c}{\sqrt{a_0-1}})^T \in \mathbb{R}^{n+1} \)
2. \(w = \frac{1}{\sqrt{2}} (-1, \frac{c}{\sqrt{a_0-1}})^T \in \mathbb{R}^{n+1} \)

From (20), we find \(v \) and \(w \) are unit vectors. i.e., \(vv^T = 1 = \ww^T \). Moreover,

1. \(Sv = (a_0 + \sqrt{a_0^2 - 1})v \)
2. \(Sw = (a_0 - \sqrt{a_0^2 - 1})w \)

Notice, \(a_0 \pm \sqrt{a_0^2 - 1} > 0 \). This shows \(S \) is a positive-definite symmetric real matrix. From the eigenvalues of \(S \), we find \(\det(S) = 1 \). Moreover, it can be verified that \(S^TJS = J \). Then \(S \in SO^+(1, n) \). Moreover, from (20), we find \(AA^T = S^2 \). Let \(A = SR \) for some \(R \in O^+(1, n) \). Since \((S^{-1})^T = S^{-1} \). Then

\[
RR^T = S^{-1}AA^T(S^{-1})^T = I_{1,n}.
\]

Then \(R \) is an orthogonal matrix, and we find

\[
R = \begin{pmatrix} 1 & 0 \\ 0 & A_0 - \frac{cb^T}{1+a_0} \end{pmatrix} \in O(1 + n). \] (22)

Lemma 29 Let \(A, S, R \) be given as in (19), (21), and (22). Then \(A = SR \), \(S \) is a positive-definite symmetric matrix, and \(R \in O(1 + n) \) is an orthogonal matrix.

We recall the group isomorphism in (8). If \(x = (x_0, \ldots, x_n)^T \in Q \), let \(x' = F_0(x) = \frac{1}{1+x_0}(x_1, \ldots, x_n)^T \in B \). For matrix \(A \) in (19), if \(A_0 \in O(n) \), then \(a_0 = 1 \) and \(b = c = 0 \). Consequently,

\[
\begin{align*}
F(A)(x') &= F_0A(x) \\
&= F_0(w)
\end{align*}
\]

where \(w^T = (x_0, (x_1, \ldots, x_n)A_0^T) \). Then \(F(A)(x') = A_0(x') \). Thus, if \(A_0 \in O(n) \) and \(A = 1 \oplus A_0 \in O^+(1, n) \), then

\[
F(1 \oplus A_0) = A_0 \in GM(B).
\] (23)

Lemma 30 Let \(t \in \mathbb{R}, a = \tanh(t)c_1 \in B \), and let \(r = |\text{csch}(t)| \). Then

\[
T_a = F\left(\begin{pmatrix} \cosh 2t & -\sinh 2t \\ -\sinh 2t & \cosh 2t \end{pmatrix} \oplus I_{n-1} \right).
\]
Finally, applying (23), we find
\[F \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \oplus I_{n-1} \right) = f^{e_1} \in GM(B). \]

In [1, p. 52-53]], it is shown that
\[\sigma_a = F \left(\left(\begin{array}{cc} \cosh 2t & \sinh 2t \\ -\sinh 2t & -\cosh 2t \end{array} \right) \oplus I_{n-1} \right). \]

Finally,
\[
T_a = \sigma_a r_a = F \left(\left(\begin{array}{cc} \cosh 2t & \sinh 2t \\ -\sinh 2t & -\cosh 2t \end{array} \right) \oplus I_{n-1} \right) \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \oplus I_{n-1} \right) = F \left(\left(\begin{array}{cc} \cosh 2t & \sinh 2t \\ -\sinh 2t & -\cosh 2t \end{array} \right) \oplus I_{n-1} \right).
\]

Proof Since \(1 + r_a^2 = |a|^2 \), the sphere \(S(a^1, r_a) \) is orthogonal to \(S^1 \). Let \(\sigma_a \) be the reflection about the sphere \(S(a^1, r_a) \). Recall, \(T_a = \sigma_a f_a/|a| \). Clearly, \(f_a/|a| = f^{e_1} \).

Let \(S \) denote the set of positive-definite symmetric matrices \(R \) in \(O^+(1, n) \)

Lemma 31 Let \(\phi \in O(n) \), \(a = \tanh(t) \phi(e_1) \in B \), \(a_0 = \cosh(2t) \), and let \(c = -\sinh(2t) \phi(e_1) \). Then

1. \(F \left(\left(\begin{array}{cc} a_0 & c^T \\ c & I_n + \frac{cc^T}{1+a_0} \end{array} \right) \right) = T_a \)

2. \(F \left(\left(\begin{array}{cc} 1+|a|^2 & 2a^T \\ \frac{2a^T}{|a|^2-1} & I_n + \frac{2a^T a}{1-|a|^2} \end{array} \right) \right) = T_a \).

In particular, \(S = \{ T_a : a \in B \} \).
References

