1. Determine the cross product, and the angle θ between vectors $v = (2\sqrt{3}, 2, 0)$ and $w = (\sqrt{3}, 1, -2)$.

2. Determine an equation of the plane that is tangent to the surface $3 = ze^{y/x}$ at the point $P(1, 0, 3)$.

3. Determine the vectors of length 2 that are tangent to the graph of $f(x) = \frac{2 \cos(x)}{3}$ at the point where $x = \frac{\pi}{6}$.

4. Sketch the solid in the first octant that is bounded by the graphs of $z = \sqrt{y}$, $y = 2x$, $y = 2$, $x = 0$, and $z = 0$.
 Label the coordinate axes. Then determine the volume of the solid.

5. Let $F(x, y) = (x - y, x + y)$ be a vector field function.
 Let C be the closed curve formed by $y = 2x$ to point $y = x^2$.
 Sketch the curve C. The curve C is traversed counterclockwise.
 Evaluate the line integral $\int_C F \cdot dr$.

6. Evaluate $\int_0^2 \int_0^{\sqrt{4-x^2}} xydydx$ by changing the variables to polar coordinates.
 Sketch and shade the region of integration in the xy-plane.
 Label the coordinate axes.

7. Let $f(x, y) = \frac{4x}{y^2+1}$. Let $P(2, 1)$ be a point, and let $v = (\cos(\frac{\pi}{3}), \sin(\frac{\pi}{3}))$ be a unit vector.
 Evaluate the directional derivative of $f(x, y)$ at the given point P, and in the direction of the unit vector v.

8. Let R be a solid in the first octant that is bounded by $x^2 + y^2 + z^2 = 4$, and the coordinate planes.
 Include a sketch of the solid R. Label the coordinate axes.
 Evaluate $\int \int \int_R zdV$. Apply a change of variables to spherical coordinates.

9. Sketch and shade the region R in the xy-plane bounded by the graphs $y = 2x$, $x = 4$, and $y = 0$.
 We consider R as a ‘floor’ of a surface S to be defined as follows.
 Let S be the portion of the surface $2x + y + z = 4$ where (x, y) lies on the ‘floor’ R.
 Evaluate the area of the surface S.

10. Let $F(x, y, z) = (0, 0, x)$ be a vector field.
 Let M be a surface that is parametrized by $r(t, \theta) = (t \cos(\theta), t \sin(\theta), t)$ where $0 \leq t \leq 3$ and $0 \leq \theta \leq \frac{\pi}{6}$.
 Evaluate the surface integral of $F(x, y, z)$ over the surface M that is parametrized by $r(t, \theta)$.

11. Evaluate the line integral $\int_C (ydx + xdy)$ where C is a directed line segment point $(\frac{\pi}{6}, 0)$ to point $(\frac{\pi}{3}, \frac{\pi}{4})$.
