Math 165-01 Review 2

Directions: Show your work, organize, and write clearly.

1. Evaluate the trigonometric expressions.
 a) \(\cos(15^\circ) \)
 b) \(\sin(105^\circ) \)

2. Plot the points \(A(2,1) \) and \(B(6,1) \). Then plot point \(C \) which lies above the line segment \(\overline{AB} \), and that makes angles \(\angle ABC = 75^\circ \) and \(\angle BAC = 60^\circ \).
 a) Determine the distance \(BC \).
 b) Find an equation of the line containing \(A \) and \(C \).
 c) Determine the perpendicular distance from \(C \) to the line segment \(\overline{AB} \).

3. Determine the center and radius of the circle \(x^2 + y^2 - \frac{4}{3}x + \frac{3}{2}y + \frac{43}{48} = 0 \)

4. Let \(f(x) = 2x^2 - x + 5 \)
 a) Evaluate \(\frac{f(x + \Delta x) - f(x)}{\Delta x} \)
 b) Solve \(f(x) = 26 \).
 c) Solve the equation \(f(\sin(x)) = 5 \) for all solutions in the interval \(0 \leq x < 2\pi \).

5. Evaluate the trigonometric expressions.
 a) \(\sin\left(\frac{\pi}{6}\right) \cos\left(\frac{\pi}{12}\right) + \cos\left(\frac{\pi}{6}\right) \sin\left(\frac{\pi}{12}\right) \)
 b) \(\cos\left(\frac{11\pi}{12}\right) \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{11\pi}{12}\right) \sin\left(\frac{\pi}{4}\right) \)

6. Solve the equation for all solutions in the interval \(0 \leq \theta < 2\pi \).
 a) \(\csc^2(\theta) - \csc(\theta) = 2 \)
 b) \(2\sin^2(\theta) = \cos(\theta) + 1 \)
 c) \(\tan^2(\theta) - \sec(\theta) - 1 = 0 \)

7. Find the slope-intercept form of the line that passes through the pair of points.
 a) \(\left(\frac{2}{3}, \frac{1}{3}\right) \) and \(\left(\frac{3}{4}, \frac{1}{2}\right) \)
 b) \((\cos 0, \sin 0) \) and \((\cos \frac{\pi}{3}, \sin \frac{\pi}{3}) \)